Skip to main content

Advertisement

Log in

Comparative Anticancer Potential of Biologically and Chemically Synthesized Gold Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study was aimed to evaluate the anticancer behaviour of the biogenic and chemically synthesized gold nanoparticles (GNPs) towards cancerous (HeLa, MCF-7, A549 and H1299) and normal (HEK293) cell lines. We observed that biologically synthesized particles were spherical with average size ranging from 2 to 10 nm, whereas the chemically synthesized particles were polydispersed with average size ranging from 5 to 20 nm. SEM analysis suggested the crystalline behaviour of the synthesized particles. Imaging results revealed that the particles were able to penetrate the cells with localization in cytosol or in the nucleus. Cell viability assay suggested the biologically synthesized particles significantly inhibited the growth of cancerous cells in a dose dependent manner with an IC50 value of around 200 µg/mL and were found to be non-toxic towards normal cells (HEK293). While the citrate capped particles were observed to be able to kill only around 20–25% of cells even at a high concentration of 400 µg/mL. Colony suppression studies, intracellular ROS estimation, cell cycle arrest and deregulation of mitochondrial membrane potential showed the high anticancer efficiency of biologically synthesized particles in comparison to chemically synthesized particles. Based on these observations we confirm Ocimum tenuiflorum extract stabilized GNPs have potentially promising antitumor substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Khazaei, V. Ramachandran, R. Abdul Hamid, et al. (2017). Biomed. Pharmacother.89, 1216.

    Article  CAS  PubMed  Google Scholar 

  2. R. Khanam, R. Kumar, I. I. Hejazi, et al. (2018). Apoptosis23, (2), 113.

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization (2012). GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. International agency for research on cancer, population fact sheets (Islamic Republic of Iran).

  4. A. A. Alshatwi, V. S. Periasamy, J. Athinarayanan, et al. (2016). Chem. Biol. Interact.247, 1.

    Article  CAS  PubMed  Google Scholar 

  5. R. Thangam, M. Sathuvan, A. Poongodi, et al. (2014). Carbohydr Polym.107, 138.

    Article  CAS  PubMed  Google Scholar 

  6. M. Kodiha and Y. M. Wang Hutter (2015). Theranostics.5, 357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. R. A. Petros and J. M. DeSimone (2010). Nat. Rev. Drug Discov.9, 615.

    Article  CAS  PubMed  Google Scholar 

  8. A. Rai, A. Prabhune, and C. C. Perry (2010). J. Mater. Chem.20, (32), 6789.

    Article  CAS  Google Scholar 

  9. G. T. Peng, U. O. Adams, M. Hakim, et al. (2009). Nat. Nanotechnol.4, 669.

    Article  CAS  PubMed  Google Scholar 

  10. M. Saravanan, T. Asmalash, A. Gebrekidan, D. Gebreegziabiher, T. Araya, H. Hilekiros, H. Barabadi, and K. Ramanathan (2018). Pharm. Nanotechnol.6, 17.

    Article  CAS  PubMed  Google Scholar 

  11. H. Barabadi, Z. Alizadeh, M. T. Rahimi, A. Barac, A. E. Maraolo, L. J. Robertson, A. Masjedi, F. Shahrivar, and E. Ahmadpour (2019). Nanomed. NBM18, 221.

    Article  CAS  Google Scholar 

  12. D. T. Thompson (2007). Nano Today.2, 40.

    Article  Google Scholar 

  13. S. D. Perrault and W. C. W. Chan (2010). Proc. Natl. Acad. Sci.107, 11194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. K. Sarkar and A. K. Chaudhary (2010). J. Sci. Ind. Res.69, 901.

    CAS  Google Scholar 

  15. S. Alex and A. Tiwari (2015). J. Nanosci. Nanotechnol.15, 1869.

    Article  CAS  PubMed  Google Scholar 

  16. B. Krishna and G. Dan (2009). J. Mater. Res.24, 2828.

    Article  Google Scholar 

  17. R. M. Tripathi, A. Saxena, N. Gupta, et al. (2010). Digest J. Nanomater. Biostruct.5, 427.

    Google Scholar 

  18. A. Taleb, C. Petit, and M. P. Pilen (1997). Chem. Mater.9, 950.

    Article  CAS  Google Scholar 

  19. P. Mukherjee, A. Ahmad, D. Mandal, et al. (2001). Nano Lett.1, 515.

    Article  CAS  Google Scholar 

  20. S. Salari, S. Esmaeilzadeh Bahabadi, A. Samzadeh-Kermani, and F. Yousefzaei (2019). Iran. J. Pharm. Res.18, 430.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Z. Rezvani Amin, Z. Khashyarmanesh, B. S. Fazly Bazzaz, and Z. Sabeti Noghabi (2019). Iran. J. Pharm. Res.18, 210.

    PubMed  PubMed Central  Google Scholar 

  22. T. Ramezani, M. Nabiuni, J. Baharara, K. Parivar, and F. Namvar (2019). Iran. J. Pharm. Res.18, 222.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. H. Barabadi, F. Kobarfard, and H. Vahidi (2018). Iran. J. Pharm. Res.17, 87.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Maham and R. Karami-Osboo (2017). Iran. J. Pharm. Res.16, 462.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran. J. Pharm. Res.16, 1167.

    PubMed  PubMed Central  Google Scholar 

  26. R. Dobrucka (2017). Iran. J. Pharm. Res.16, 753.

    CAS  Google Scholar 

  27. A. Chahardoli, N. Karimi, and A. Fattahi (2017). Iran. J. Pharm. Res.16, 1169.

    Google Scholar 

  28. Q. Abbas, M. Saleem, A. R. Phull, M. Rafiq, M. Hassan, K.-H. Lee, and S.-Y. Seo (2017). Iran. J. Pharm. Res.16, 760.

    CAS  Google Scholar 

  29. M. M. Or Rashid, M. S. Islam, M. A. Haque, M. A. Rahman, M. T. Hossain, and M. A. Hamid (2016). Iran. J. Pharm. Res.15, 591.

    PubMed  PubMed Central  Google Scholar 

  30. H. Barabadi and S. Honary (2016). Pharm. Biomed. Res.2, 1.

    Google Scholar 

  31. M. Kasithevar, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi, and Z. K. Shinwari (2017). J. Interdiscip. Nanomed.2, 131.

    Article  CAS  Google Scholar 

  32. H. Barabadi, S. Honary, P. Ebrahimi, A. Alizadeh, F. Naghibi, and M. Saravanan (2019). Inorg. Nano-Met. Chem.49, 33.

    Article  CAS  Google Scholar 

  33. P. N. Aniwal, C. M. Bellurkar, and P. B. Bhosale (2006). J. Dairy. Foods Home Sci.25, 218.

    Google Scholar 

  34. P. Pattanayak, P. Behera, D. Das, et al. (2010). Pharmacogn. Rev.4, (7), 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P. Prakash and N. Gupta (2005). Indian J. Physiol. Pharmacol.49, (2), 125.

    CAS  PubMed  Google Scholar 

  36. E. H. M. Hussain, K. Jamil, and M. Rao (2001). Indian J. Clin. Biochem.16, (2), 190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. F. Aqil, R. Munagala, J. Jeyabalan, et al. (2012). Cancer Lett.334, 133.

    Article  CAS  Google Scholar 

  38. M. J. Kadhim, A. A. Sosa, and I. H. Hameed (2016). J. Pharmacogn. Phytother.8, (6), 127.

    Article  CAS  Google Scholar 

  39. V. Kumar and S. K. Yadav (2009). J. Chem. Technol. Biotechnol.84, 151.

    Article  CAS  Google Scholar 

  40. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomedicine6, 257.

    Article  CAS  PubMed  Google Scholar 

  41. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, et al. (1997). J. Chem. Soc. Chem. Commun.7, 801.

    Google Scholar 

  42. W. Haiss, N. T. K. Thanh, J. Aveyard, et al. (2007). Anal Chem.79, 4215.

    Article  CAS  PubMed  Google Scholar 

  43. J. Zheng, C. Zhang, and R. M. Dickson (2004). Phys. Rev. Lett.93, (7), 077402.

    Article  PubMed  CAS  Google Scholar 

  44. P. K. Gautam, S. Kumar, M. S. Tomar, et al. (2017). J. Cell Sci. Ther.8, 6.

    Article  Google Scholar 

  45. M. R. Kamala Priya and P. R. Iyer (2015). Appl. Nanosci.5, 443.

    Article  CAS  Google Scholar 

  46. D. Beaudet, S. Badilescu, K. Kuruvinashetti, et al. (2017). Sci. Rep.7, 10678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffe (2000). Apoptosis5, 415.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EP acknowledges DST-SERB, Government of India for National Post-Doctoral Fellowship (PDF/2017/000024). This research was supported by a DST-PURSE-II funding. We are thankful to the Advanced Research Instrumentation Facility (AIRF) of the University for allowing us access to their facilities. The project work was funded by UPE-II project ID 357.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muthupandian Saravanan or Ramovatar Meena.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virmani, I., Sasi, C., Priyadarshini, E. et al. Comparative Anticancer Potential of Biologically and Chemically Synthesized Gold Nanoparticles. J Clust Sci 31, 867–876 (2020). https://doi.org/10.1007/s10876-019-01695-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01695-5

Keywords

Navigation