Skip to main content
Log in

Nano-conjugates of Cefadroxil as Efficient Antibacterial Agent Against Staphylococcus aureus ATCC 11632

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In recent era bacteria that were previously susceptible to different antibiotics are getting tolerant to these drugs. Novel nanoantibiotics can evade these emerging bacterial resistances. Thus, cefadroxil was conjugated to silver and gold nanoparticles (NPs) and resultant nanoconjugates (i.e., Cefd-AgNPs and Cefd-AuNPs) were examined against staphylococcus aureus ATCC 11632. Devised nanoconjugates were characterized by applying diverse range of characterization tools, including UV–visible, IR spectroscopy, scanning electron microscopy and atomic force microscopy (AFM). Moreover, bactericidal potential of Cefd-AgNPs and Cefd-AuNPs was compared with the efficacy of non-conjugated cefadroxil served as control. Experimentally obtained results show that conjugation of cefadroxil with gold and silver NPs enhanced the antibacterial potential of cefadroxil up to 3 and 2 times, respectively. Surface topography of the controlled and treated bacterial cells was also scanned by AFM. Moreover, AFM revealed that effective treatment time of cefadroxil (i.e., 8 h) also get reduced to one half upon conjugation of cefadroxil with both gold and silver (i.e., 4 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. M. Barbosa and S. B. Levy (2000). Drug Resist Updat3, (5), 303–311. https://doi.org/10.1054/drup.2000.0167.

    PubMed  Google Scholar 

  2. J. T. Seil and T. J. Webster (2012). Int. J. Nanomed.7, 2767–2781. https://doi.org/10.2147/IJN.S24805.

    CAS  Google Scholar 

  3. R. P. Allaker and G. Ren (2008). Trans. R. Soc. Trop. Med. Hyg.102, 1–2. https://doi.org/10.1016/j.trstmh.2007.07.003.

    PubMed  Google Scholar 

  4. H. J. Klasen (2000). Burns.26, 131–138. https://doi.org/10.1016/S0305-4179(99)00116-3.

    CAS  PubMed  Google Scholar 

  5. M. Chamundeeswari, S. S. L. Sobhana, J. P. Jacob, M. G. Kumar, M. P. Devi, T. P. Sastry, and A. B. Mandal (2010). Biotechnol. Appl. Biochem.55, 29–35. https://doi.org/10.1042/BA20090198.

    CAS  PubMed  Google Scholar 

  6. H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone (2010). Crit. Rev. Toxicol.40, 328–346. https://doi.org/10.3109/10408440903453074.

    CAS  PubMed  Google Scholar 

  7. W. H. De Jong and P. J. A. Borm (2008). Int. J. Nanomed.3, 133–149. https://doi.org/10.2147/IJN.S596.

    Google Scholar 

  8. A. Im, L. Han, E. Kim, J. Kim, Y. S. Kim, and Y. Park (2012). Phytother. Res.26, 1249–1255. https://doi.org/10.1002/ptr.3683.

    CAS  PubMed  Google Scholar 

  9. N. M. Zaki and M. M. Hafez (2012). AAPS Pharm. Sci. Tech.13, 411–421. https://doi.org/10.1208/s12249-012-9758-7.

    CAS  Google Scholar 

  10. A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, and S. Minaian (2007). Nanomed-Nanotechnol3, (2), 168–171. https://doi.org/10.1016/j.nano.2007.02.001.

    CAS  Google Scholar 

  11. R. Nishanthi, S. Malathi, and P. Palani (2019). Mater. Sci. Eng. C.96, 693–707. https://doi.org/10.1016/j.msec.2018.11.050.

    CAS  Google Scholar 

  12. T. S. Shruthi, M. R. Meghana, M. U. Medhaa, S. Sanjana, P. N. Navya, and H. K. Daima (2019). Mater. Today.10, 8–15. https://doi.org/10.1016/j.matpr.2019.02.181.

    CAS  Google Scholar 

  13. A. Kaur, S. Preet, V. Kumar, R. Kumar, and R. Kumar (2019). Colloids Surf. B.176, 62–69. https://doi.org/10.1016/j.colsurfb.2018.12.043.

    CAS  Google Scholar 

  14. X. Liu, L. Ma, F. Chen, J. Liu, H. Yang, and Z. Lu (2019). J. Inorg. Biochem.196, 110687. https://doi.org/10.1016/j.jinorgbio.2019.04.001.

    CAS  PubMed  Google Scholar 

  15. N. Marei, A. H. Elwahy, T. A. Salah, Y. El Sherif, and E. A. El-Samie (2019). Int. J. Biol. Macromol.126, 262–272. https://doi.org/10.1016/j.ijbiomac.2018.12.204.

    CAS  PubMed  Google Scholar 

  16. M. Li, X. Jiang, D. Wang, Z. Xu, and M. Yang (2019). Colloids Surf. B.177, 370–376. https://doi.org/10.1016/j.colsurfb.2019.02.029.

    CAS  Google Scholar 

  17. S. Gurunathan, J. W. Han, D.-N. Kwon, and J.-H. Kim (2014). Nanoscale Res. Lett.9, 373. https://doi.org/10.1186/1556-276X-9-373.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan (2010). Nanomedicine.6, 103–109. https://doi.org/10.1016/j.nano.2009.04.006.

    CAS  PubMed  Google Scholar 

  19. A. N. Brown, K. Smith, T. A. Samuels, J. Lu, S. O. Obare, and M. E. Scott (2012). Appl. Environ. Microbiol.78, 2768–2774. https://doi.org/10.1128/AEM.06513-11.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. B. Saha, J. Bhattacharya, A. Mukherjee, A. Ghosh, C. Santra, A. K. Dasgupta, and P. Karmakar (2007). Nanoscale Res. Lett.2, 614. https://doi.org/10.1007/s11671-007-9104-2.

    CAS  PubMed Central  Google Scholar 

  21. L. Qi, Z. Xu, X. Jiang, C. Hu, and X. Zou (2004). Carbohyd. Res.339, 2693–2700. https://doi.org/10.1016/j.carres.2004.09.007.

    CAS  Google Scholar 

  22. M. R. Shah, S. Ali, M. Ateeq, S. Perveen, S. Ahmed, M. F. Bertino, and M. Ali (2014). New J. Chem.38, 5633–5640. https://doi.org/10.1039/C4NJ00751D.

    CAS  Google Scholar 

  23. F. Leitner, R. Goodhines, R. Buck, and K. Price (1980). Infection.8, S542–S548. https://doi.org/10.1007/BF01639667.

    Google Scholar 

  24. S. Saraç, M. Ertan, A. Balkan, and N. Yulug (1991). Arch. Pharm.324, 449–453. https://doi.org/10.1002/ardp.19913240709.

    Google Scholar 

  25. K. G. Athanassiou, S. Michaleas, E. Lada-Chitiroglou, T. Tsitsa, and E. Antoniadou-Vyza (2003). J. Pharm. Pharmacol.55, (3), 291–300. https://doi.org/10.1211/002235702649.

    CAS  PubMed  Google Scholar 

  26. M. Basha, M. M. AbouSamra, G. A. Awad, and S. S. Mansy (2018). Int. J. Pharm.544, (1), 129–140. https://doi.org/10.1016/j.ijpharm.2018.04.021.

    CAS  PubMed  Google Scholar 

  27. N. Zetola, J. S. Francis, E. L. Nuermberger, and W. R. Bishai (2005). Lancet Infect. Dis.5, (5), 275–286. https://doi.org/10.1016/S1473-3099(05)70112-2.

    PubMed  Google Scholar 

  28. T. N. J. I. Edison, R. Atchudan, and Y. R. Lee (2016). J. Clust. Sci.27, (2), 683–690. https://doi.org/10.1007/s10876-016-0972-4.

    CAS  Google Scholar 

  29. T. N. J. I. Edison, E. R. Baral, Y. R. Lee, and S. H. Kim (2016). J. Clust. Sci.27, (1), 285–298. https://doi.org/10.1007/s10876-015-0929-z.

    CAS  Google Scholar 

  30. T. N. J. I. Edison and M. G. Sethuraman (2017). J. Clust. Sci.28, (6), 3139–3148. https://doi.org/10.1007/s10876-017-1284-z.

    CAS  Google Scholar 

  31. T. N. J. I. Edison, R. Atchudan, C. Kamal, and Y. R. Lee (2016). Bioprocess Biosyst. Eng.39, (9), 1401–1408. https://doi.org/10.1007/s00449-016-1616-7.

    CAS  PubMed  Google Scholar 

  32. T. N. J. I. Edison, M. G. Sethuraman, and Y. R. Lee (2016). Res. Chem. Intermediat.42, (2), 713–724. https://doi.org/10.1007/s11164-015-2051-0.

    CAS  Google Scholar 

  33. T. N. J. I. Edison and M. G. Sethuraman (2012). Process Biochem.47, (9), 1351–1357. https://doi.org/10.1016/j.procbio.2012.04.025.

    CAS  Google Scholar 

  34. W. Pan, J. Zhao, and Q. Chen (2015). J. Agric. Food Chem.63, (36), 8068–8074. https://doi.org/10.1021/acs.jafc.5b02331.

    CAS  PubMed  Google Scholar 

  35. W. Hu, Q. Chen, H. Li, Q. Ouyang, and J. Zhao (2016). Biosens. Bioelectron.80, 398–404. https://doi.org/10.1016/j.bios.2016.02.001.

    CAS  PubMed  Google Scholar 

  36. H. Li, W. Hu, M. M. Hassan, Z. Zhang, and Q. Chen (2019). J. Food Meas. Charact.13, (1), 259–268. https://doi.org/10.1007/s11694-018-9940-z.

    Google Scholar 

  37. A. Bolshakova, O. Kiselyova, A. Filonov, O. Y. Frolova, Y. L. Lyubchenko, and I. Yaminsky (2001). Ultramicroscopy.86, 121–128. https://doi.org/10.1016/S0304-3991(00)00075-9.

    CAS  PubMed  Google Scholar 

  38. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz (2003). Phys. Chem. B.107, (3), 668–677. https://doi.org/10.1021/jp026731y.

    CAS  Google Scholar 

  39. C. Carson and T. Riley (1995). J. Appl. Microbiol.78, 264–269. https://doi.org/10.1111/j.1365-2672.1995.tb05025.x.

    CAS  Google Scholar 

  40. R. P. Singh, S. Kumar, R. Nada, R. Prasad (2006) Mol. Cell. Biochem.282(13). https://doi.org/10.1007/s11010-006-1168-2.

    CAS  PubMed  Google Scholar 

  41. A. Barbasz, M. Oćwieja, and J. Barbasz (2015). J. Appl. Biochem. Biotechnol.176, (3), 817–834. https://doi.org/10.1007/s12010-015-1613-3.

    CAS  Google Scholar 

  42. J. Kasthuri, S. Veerapandian, and N. Rajendiran (2009). Colloids Surf. B.68, (1), 55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021.

    CAS  Google Scholar 

  43. V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner (2004). J. Am. Chem. Soc.126, 11768–11769. https://doi.org/10.1021/ja046970u.

    CAS  PubMed  Google Scholar 

  44. A. M. El Badawy, R. G. Silva, B. Morris, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat (2010). Environ. Sci. Technol.45, 283–287. https://doi.org/10.1021/es1034188.

    CAS  PubMed  Google Scholar 

  45. N. Sultanova, T. Makhmoor, Z. Abilov, Z. Parween, V. Omurkamzinova, and M. I. Choudhary (2001). J. Ethnopharmacol.78, 201–205. https://doi.org/10.1016/S0378-8741(01)00354-3.

    CAS  PubMed  Google Scholar 

  46. M. Yamanaka, K. Hara, J. Kudo (2005). 71(11) 7589–7593. https://doi.org/10.1128/AEM.71.11.7589-7593.2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. S. Pramanik, S. Chatterjee, A. Saha, P. S. Devi, and G. S. Kumar (2016). Phys. Chem. B120, (24), 5313–5324. https://doi.org/10.1021/acs.jpcb.6b01586.

    CAS  Google Scholar 

  48. A. Roy, O. Bulut, S. Some, A. K. Mandal, and M. D. Yilmaz (2019). RSC Adv.9, (5), 2673–2702. https://doi.org/10.1039/C8RA08982E.

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Key R&D Program of China (2016YFD0401205) and Key R&D Program of Jiangsu Province (BE2017357).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanhuan Li or Quansheng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Perveen, S., Ali, M. et al. Nano-conjugates of Cefadroxil as Efficient Antibacterial Agent Against Staphylococcus aureus ATCC 11632. J Clust Sci 31, 811–821 (2020). https://doi.org/10.1007/s10876-019-01688-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01688-4

Keywords

Navigation