Skip to main content
Log in

Synthesis, Characterization, and Cytotoxicity of Fe3O4@Ag Hybrid Nanoparticles: Promising Applications in Cancer Treatment

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Hybrid nanomaterials have been extensively investigated because of the possibility of obtaining multiple functions in one stable entity. The magnetite nanoparticles (Fe3O4 NPs) present unique superparamagnetic properties that enable their application in various fields. Silver nanoparticles (Ag NPs) also stand out in biomedical applications, especially as antitumorigenic and antibacterial agent. The combination of Fe3O4 NPs and Ag NPs in one hybrid nanostructure (Fe3O4@Ag NPs) represents a promising strategy for targeted biomedical applications. Fe3O4@Ag NPs can be synthesized through a green route using natural reagents, as both reducing and capping agent, minimizing the nanomaterial toxicity. In this work, Fe3O4@Ag NPs were synthesized via a green route, and green tea extract was used as the reducing agent of silver ions and capping agent of the obtained Fe3O4@Ag NPs. The nanoparticles were characterized by several techniques confirming the formation of a hybrid composite consisting of 87.1% of Fe3O4 and 12.9% of Ag, with spherical shape and an average size of 25 nm. The cytotoxicity of Fe3O4@Ag NPs was verified against both tumoral and non-tumoral cell lines, demonstrating selective cytotoxicity against tumoral cell line, suggesting a biocompatibility of these nanoparticles. Thus, superparamagnetic hybrid Fe3O4@Ag NPs might find important biomedical applications with targeted antitumorigenic properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Veisi and F. Ghorbani (2014). Appl. Organomet. Chem.31, 1–6.

    Google Scholar 

  2. C. Ma, J. C. White, J. Zhao, Q. Zhao, and B. Xing (2018). Annu. Rev. Food. Sci. Technol.9, 129–153.

    Article  CAS  PubMed  Google Scholar 

  3. L. Papa, I. C. de Freitas, C. B. de Aquino, J. C. Pieretti, S. H. Domingues, R. A. Ando, and P. Camargo (2017). Mater. Chem. A5, 11720–11729.

    Article  CAS  Google Scholar 

  4. A. Polyak and T. L. Ross (2017). Curr. Med. Chem.24, 1–26.

    Article  CAS  Google Scholar 

  5. R. G. Saratale, G. Benelli, G. Kumar, D. S. Kim, and G. D. Saratale (2018). Environ. Sci. Pollut. Res.25, 10392–10406.

    Article  CAS  Google Scholar 

  6. R. A. Revia and M. Zhang (2015). Biochem. Pharmacol.10, 157–168.

    Google Scholar 

  7. M. M. S. Abdullah, A. M. Atta, H. A. Allohedan, H. Z. Alkahathlan, M. Khan, and A. Ezzat (2018). Nanomaterials8, 855.

    Article  PubMed Central  CAS  Google Scholar 

  8. M. Usman, J. M. Byrbe, A. Chaudhary, S. Orsetti, K. Hanna, C. Ruby, A. Kappler, and S. B. Haderlein (2018). Chem. Rev.118, 3251–3304.

    Article  CAS  PubMed  Google Scholar 

  9. P. S. Haddad, M. C. Santos, C. A. de Guzzi Cassago, J. S. Bernardes, M. B. de Jesus, and A. B. Seabra (2016). J. Nanoparticle Res.18, 369.

    Article  CAS  Google Scholar 

  10. A. R. Nochehdehi, S. Thomas, M. Sadri, S. S. Afghahi, and S. M. Hadavi (2017). J. Nanomed. Nanotechnol.8, 01.

    Google Scholar 

  11. Z. R. Stephen, F. M. Kievit, and M. Zhang (2012). Mater. Today14, 330–338.

    Article  CAS  Google Scholar 

  12. J. Li, R. Cha, Y. Zhang, H. Guo, K. Long, P. Gao, X. Wang, F. Zhou, and X. Jiang (2018). J. Mater. Chem. B.6, 6413–6423.

    Article  CAS  PubMed  Google Scholar 

  13. Z. Li, M. Kawashita, N. Araki, M. Mitsumori, M. Hiraoka, and M. Doi (2010). Mater. Sci. Eng. C30, 990–996.

    Article  CAS  Google Scholar 

  14. M. S. Baptista and M. Wainwright (2011). Braz. J. Med. Biol. Res.44, 1–10.

    Article  CAS  PubMed  Google Scholar 

  15. F. Sadeghfar and M. R. Hajinezhad (2018). J. Mol. Liq.265, 96–104.

    Article  CAS  Google Scholar 

  16. A. B. Seabra, T. Pasquôto, A. C. F. Ferrarini, M. C. Santos, P. S. Haddad, and R. Lima (2014). Chem. Res. Toxicol.27, 1207–1218.

    Article  CAS  PubMed  Google Scholar 

  17. S. M. Ghaseminezhad and S. A. Shojaosadati (2016). Carbohydr. Polym.144, 454–463.

    Article  CAS  PubMed  Google Scholar 

  18. L. M. Tung, N. X. Cong, L. T. Huy, N. T. Lan, V. N. Phan, N. Q. Hoa, L. K. Vinh, N. V. Thinh, L. T. Tai, D.-T. Ngo, K. Molhave, T. Q. Huy, and A.-T. Le (2016). J. Nanosci. Nanotechnol.16, 5902–5912.

    Article  CAS  Google Scholar 

  19. C. Yong, X. Chen, Q. Xiang, Q. Li, and X. Xing (2018). Bioact Mater3, 80–86.

    Article  PubMed  Google Scholar 

  20. Y. Li, J. S. Church, A. L. Woodhead, and F. Moussa (2010). Spectrochim. Acta. Part. A Mol. Biomol. Spectrosc.76, 484–489.

    Article  CAS  Google Scholar 

  21. P. Kucheryavy, J. He, V. T. John, P. Maharjan, L. Spinu, G. Z. Goloverda, and V. L. Kolesnichenko (2013). Langmuir29, 710–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. X. Tian, S. Liu, J. Zhu, Z. Qian, and L. Bai (2019). Nanotechnology30, 1–10.

    Google Scholar 

  23. K. S. Siddiqi, A. Husen, and R. A. K. Rao (2018). J. Nanobiotechnol.16, 14.

    Article  CAS  Google Scholar 

  24. W. R. Rolim, J. C. Pieretti, D. L. S. Renó, B. A. Lima, M. H. M. Nascimento, F. N. Ambrosio, C. B. Lombello, M. Brocchi, A. C. S. de Souza, and A. B. Seabra (2019). Appl. Mater. Interfaces11, 6589–6604.

    Article  CAS  Google Scholar 

  25. H. Veisi, M. Kavian, M. Hekmati, and S. Hemmati (2019). Polyhedron161, 338–345.

    Article  CAS  Google Scholar 

  26. C. Li, Z. Guan, C. Ma, N. Fang, H. Liu, and M. Li (2017). Inorg. Chem. Commun.84, 246–250.

    Article  CAS  Google Scholar 

  27. H. Veisi, L. Mohammadi, S. Hemmati, T. Tamoradi, and P. Mohammadi (2019). ACS Omega4, 13991–14003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Shahriari, H. Veisi, M. Hekmati, and S. Nemmati (2018). Mat Eng Sci C90, 57–66.

    Article  CAS  Google Scholar 

  29. H. Veisi, M. Ghorbani, and S. Hemmati (2019). Mat. Sci. Eng. C98, 584–593.

    Article  CAS  Google Scholar 

  30. M. V. Efremova, V. A. Naumenko, M. Spasova, A. S. Garanina, M. A. Abakumov, A. D. Blokhina, P. A. Melnikov, A. O. Prelovskaya, M. Heidelmann, Z.-A. Li, Z. Ma, I. V. Shschetinin, Y. I. Golovin, I. I. Kireev, A. G. Savchenko, V. P. Chekhonin, N. L. Klyachko, M. Farle, A. G. Majouga, and U. Wiedwald (2018). Sci Rep8, 11195.

    Article  CAS  Google Scholar 

  31. M. S. Akhtar, J. Panwar, S. Pilani, and Y. Yun (2013). Sustain. Chem. Eng.1, 591–602.

    Article  CAS  Google Scholar 

  32. H. Duan, D. Wang, and Y. Li (2015). Chem. Soc. Rev.44, 5778–5792.

    Article  CAS  PubMed  Google Scholar 

  33. S. Iravani (2014). Int. Sch. Res. Notices2014, 18.

    Google Scholar 

  34. S. Venkateswarlu, B. N. Kumar, B. Prathima, K. Anitha, and N. V. Jyothi (2015). Phys. B. Condens. Matter457, 30–35.

    Article  CAS  Google Scholar 

  35. W. R. Rolim, M. T. Pelegrino, B. de Lima, L. S. Ferraz, F. N. Costa, J. S. Bernardes, T. Rodigues, M. Brocchi, and A. B. Seabra (2019). Appl. Surf. Sci.463, 66–74.

    Article  CAS  Google Scholar 

  36. A. B. Seabra and N. Durán (2015). Metals5, 934–975.

    Article  CAS  Google Scholar 

  37. C. E. Escárcega-González, J. A. Garza-Cervantes, A. Vázquez-Rodríguez, L. Z. Montelongo-Peralta, M. T. Treviño-Gonzalez, E. D. Castro, E. M. Saucedo-Salazar, R. C. Morales, D. R. Soto, F. T. González, and J. C. Rosales (2018). Int. J. Nanomed.13, 2349–2363.

    Article  Google Scholar 

  38. S. C. G. K. Daniel, P. Joseph, and M. Sivakumar (2017). Nanosci. Nanotechnol. Asia7, 1–7.

    CAS  Google Scholar 

  39. H. Veisi, S. Kazemi, P. Mohammadi, P. Safarimehr, and S. Hemmati (2019). Polyhedron157, 232–240.

    Article  CAS  Google Scholar 

  40. M. M. Molina, A. B. Seabra, M. G. de Oliveira, R. Itri, and P. S. Haddad (2013). Mat. Sci. Eng. C33, 746–751.

    Article  CAS  Google Scholar 

  41. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, and R. Rizzi (2015). J. Appl. Crystallogr.48, 1–6.

    Article  CAS  Google Scholar 

  42. D. L. Bish and S. A. Howard (1998). J. Appl. Crystallogr.21, 86–91.

    Article  Google Scholar 

  43. H. M. Rietveld (1967). Acta Cryst.22, 151–152.

    Article  CAS  Google Scholar 

  44. H. M. Rietveld (1969). J. Appl. Crystallogr.2, 65–71.

    Article  CAS  Google Scholar 

  45. B. Y. M. Iizumi (1969). Acta Crystallogr. B38, 2121–2133.

    Article  Google Scholar 

  46. J. Spreadborough and L. Holland (1959). J. Sci. Instrum.36, 116–118.

    Article  Google Scholar 

  47. C. J. Kirkpatrick, F. Bittinger, M. Wagner, H. Köhler, T. G. van Kooten, C. L. Klein, and M. Otto (1998). Proc. Inst. Mech. Eng. H.212, 75–84.

    Article  CAS  PubMed  Google Scholar 

  48. R. Sharma, D. P. Bisen, U. Shukla, and B. G. Sharma (2012). Recent Res. Sci. Technol.4, 77–79.

    CAS  Google Scholar 

  49. L. C. Gonçalves, A. B. Seabra, M. T. Pelegrino, D. R. de Araujo, J. S. Bernardes, and P. S. Haddad (2017). RSC Adv.7, 14496–14503.

    Article  Google Scholar 

  50. N. T. Nguyen, D. L. Tran, D. C. Nguyen, T. L. Nguyen, T. C. Ba, B. H. Nguyen, T. D. Ba, N. H. Pham, D. T. Nguyen, T. H. Tran, and G. D. Pham (2018). Curr. Appl. Phys.15, 1482–1487.

    Article  Google Scholar 

  51. V. Ahluwalia, S. Elumalai, V. Kumar, S. Kumar, and R. S. Sangwan (2017). Microb. Pathog.114, 402–408.

    Article  PubMed  CAS  Google Scholar 

  52. B. Banumathi, B. Vaseeharan, P. Suganya, T. Citarasu, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Clust. Sci.28, 2027–2040.

    Article  CAS  Google Scholar 

  53. D. K. Kim, M. Mikhaylova, Y. Zhang, and M. Muhammed (2003). Chem. Mater.15, 1617–1627.

    Article  CAS  Google Scholar 

  54. W. Jiang and K. L. Hao (2011). J. Nanopart. Res.13, 5135–5145.

    Article  CAS  Google Scholar 

  55. O. Ivashchenko, M. Lewandowski, B. Peplińska, M. Jarek, G. Nowaczyk, M. Wiesner, K. Załęski, T. Babutina, A. Warowicka, and S. Jurga (2015). Mater. Sci. Eng. C55, 343–359.

    Article  CAS  Google Scholar 

  56. S. A. Ansari, J. Lee, and M. H. Cho (2013). J. Phys. Chem.117, 27023–27030.

    CAS  Google Scholar 

  57. A. Pachla, Z. Landzion-Bielun, D. Moszinsky, A. Markowska-Szczupak, U. Narkiewicz, R. J. Wróbel, N. Guskus, and G. Zolnierkiewicz (2016). Pol. J. Chem. Technol.18, 110–116.

    Article  CAS  Google Scholar 

  58. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, and Y. Liu (2011). Nanoscale3, 3357–3363.

    Article  CAS  PubMed  Google Scholar 

  59. X. Wang, A. Deng, W. Cao, Q. Li, L. Wang, J. Zhou, B. Hu, and X. Xing (2018). J. Mater. Sci.53, 6433–6449.

    Article  CAS  Google Scholar 

  60. X. N. Pham, T. P. Nguyen, T. N. Pham, T. T. N. Tran, and T. V. T. Tran (2016). Adv. Nat. Sci. Nanosci. Nanotechnol.7, 1–9.

    Google Scholar 

  61. A. Homayoun and K. Hamed (2017). Appl. Organomet. Chem.31, e3873.

    Article  CAS  Google Scholar 

  62. G. R. Iglesias, A. V. Delgado, F. González-Caballero, and M. M. Ramos-Tejada (2017). J. Magn. Magn. Mater431, 294–296.

    Article  CAS  Google Scholar 

  63. M. T. Pelegrino, B. de Lima, M. Nascimento, C. Lombello, M. Brocchi, and A. B. Seabra (2018). Polymers (Basel)10, 452.

    Article  PubMed Central  CAS  Google Scholar 

  64. S. Khaghani and D. Ghanbari (2016). J. Mater. Sci.Mater. Electron.28, 2877–2886.

    Article  CAS  Google Scholar 

  65. M. Sajjadi, M. Nasrollahzadeh, and S. M. Sajadi (2017). J. Colloid Interface Sci.497, 1–13.

    Article  CAS  PubMed  Google Scholar 

  66. W. Fang, J. Zheng, C. Chen, H. Zhang, Y. Lu, L. Ma, and G. Chen (2014). J. Magn. Magn. Mater.357, 1–6.

    Article  CAS  Google Scholar 

  67. R. Ramesh, M. Geerthana, S. Prabhu, and S. Sohila (2016). J. Clust. Sci.28, 963–969.

    Article  CAS  Google Scholar 

  68. M. V. Efremova, V. A. Naumenko, M. Spasova, A. S. Garanina, M. A. Abakumov, A. D. Blokhina, P. A. Melnikov, O. P. Alexandra, M. Heidelmann, Z. Li, Z. Ma, I. V. Shchetinin, Y. I. Golovin, I. I. Kireev, A. G. Savchenko, V. P. Chekhonin, N. L. Klyachko, M. Farle, A. G. Majouga, and U. Wiedwald (2018). Sci. Rep.8, 11295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. A. B. Seabra, N. Manosalva, B. De Lima, M. T. Pelegrino, M. Brocchi, O. Rubilar, and N. Duran (2017). J. Phys. Conf. Ser.838, 01203.

    Google Scholar 

  70. Q. Ding, D. Liu, D. Guo, F. Yang, X. Pang, R. Che, N. Zhou, J. Xie, J. Sun, Z. Huang, and N. Gu (2017). Biomaterials124, 35–46.

    Article  CAS  PubMed  Google Scholar 

  71. O. Ivashchenko, E. Coy, B. Peplinska, M. Jarek, M. Lewandowski, K. Zaleski, A. Waeowicka, A. Wozniak, T. Babutina, J. Jurga-Stopa, J. Dolinsek, and S. Jurga (2017). Nanotechnology28, 055603.

    Article  PubMed  CAS  Google Scholar 

  72. H. Wang, J. Shen, G. Cao, Z. Gai, K. Hong, P. Debata, P. Banerjee, and S. Zhou (2013). J. Mater. Chem. B1, 6225–6234.

    Article  CAS  PubMed  Google Scholar 

  73. P. Kaur, R. Thakur, H. Malwal, A. Manuja, and A. Chaudhury (2018). Biocatal. Agric Biotechnol.14, 189–197.

    Article  Google Scholar 

  74. K. Zoromodian, H. Veisi, S. M. Mousavi, M. S. Ataabadi, S. Yasdanpanah, J. Bagheri, A. P. Mehr, S. Hemmati, and H. Veisi (2018). Int. J. Nanomedicine13, 3965–3973.

    Article  Google Scholar 

  75. S. Goyal, N. Gupta, A. Kumar, S. Chatterjee, and S. Nimesh (2018). IET Nanobiotechnol.12, 526–533.

    Article  PubMed  PubMed Central  Google Scholar 

  76. W. Kai, X. Xiaojun, X. Pu, H. Zhenqing, and Z. Qiqing (2011). Nanoscale Res. Lett.6, 480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. D. McShan, P. C. Ray, and H. Yu (2014). J. Food Drug Anal.22, 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Z. Zhang, Z. Liu, Z. Lou, F. Chen, S. Chang, Y. Miao, Z. Zhou, X. Hu, J. Feng, Q. Ding, P. Liu, N. Gu, and H. Zhang (2018). Artifi. Cells. Nanomed Biotechnol.46, 5975.

    Google Scholar 

  79. X. Cheng, W. Zhang, Y. Ji, J. Meng, H. Guo, J. Liu, X. Wu, and H. Xu (2013). RSC Adv.3, 2296–2305.

    Article  CAS  Google Scholar 

  80. D. S. Arumai, D. Mahendiran, R. K. Senthil, and A. R. Kalilur (2018). Garlic J. Photochem. Photobiol. B. Biol.180, 243–252.

    Article  CAS  Google Scholar 

  81. A. Haase, S. RotT, A. Mantion, P. Graf, J. Plendi, A. F. Thünemann, W. P. Meier, A. Taubert, A. Luch, and G. Reiser (2018). Toxicol. Sci.126, 457–468.

    Article  CAS  Google Scholar 

  82. D. He, J. J. Dorantes-Aranda, and T. D. Waite (2012). Environ. Sci. Technol.46, 8731–8738.

    Article  CAS  PubMed  Google Scholar 

  83. J.-Y. Roh and H.-J. Eom (2012). Toxicol. Res28, 19e24.

    Article  CAS  Google Scholar 

  84. T. Shi, X. Sun, and Q.-Y. He (2018). Curr. Protein Pept. Sci.19, 525–536.

    Article  CAS  PubMed  Google Scholar 

  85. E. Zielinska, A. Zauszkiewicz-Pawlak, M. Wojcik, and I. Inkielewicz-Stepniak (2018). Oncotarget9, 4675–4697.

    Article  PubMed  Google Scholar 

  86. E. Lengert, A. Kozlova, A. Pavlov, and T. V. Bukreeva (2019). Mat. Sci. Eng. C98, 1114–1121.

    Article  CAS  Google Scholar 

  87. C. G. England, M. C. Miller, A. Kuttan, J. O. Trent, and H. B. Frieboes (2016). Eur. J. Pharm. Biopharm.92, 120–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Proof Reading Service for professionally proofread the manuscript. The authors thank the financial support provided by CNPq (404815/2018-9, 307664/2015-5) and São Paulo Research Foundation FAPESP (2018/08194-2, 2018/02832-7). We also would like to thank the Multiuser Experimental Center (CEM) from UFABC and Finep for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedea B. Seabra.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieretti, J.C., Rolim, W.R., Ferreira, F.F. et al. Synthesis, Characterization, and Cytotoxicity of Fe3O4@Ag Hybrid Nanoparticles: Promising Applications in Cancer Treatment. J Clust Sci 31, 535–547 (2020). https://doi.org/10.1007/s10876-019-01670-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01670-0

Keywords

Navigation