Skip to main content

Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata

Abstract

The purpose of the present study was to evaluate acute and chronic effects of CuO-NPs on survival rate and reproductive success of mature guppy (Poecilia reticulata) and their larvae. During the acute toxicity test, mature fish and their larvae were exposed to series of different concentrations of (0, 5, 10, 15, 20, 25, 30, 35, 40 and 45 mg L−1) CuO-NPs for 96 h and during the chronic phase we exposed mature individuals to 0, 5, 10 mg L−1 of CuO-NPs for 8 weeks. Results showed a significant correlation between mortality rate and CuO-NPs concentrations. Furthermore, the LC50 96 h of CuO-NP for mature and larvae of P. reticulata were 28.354 and 5.649 mg L−1, respectively. Finally, the fish exposed to series of CuO-NP concentrations exhibited various clinical signs such as darkening of skin, anxiety and death with open mouth. Chronic exposure affected reproductive traits of fish, with greatest effects reported in treatment with 10 mg L−1 of CuO-NPs. Those individuals had lowest reproductive success, prolonged parturition time and highest mortality rate. Results highlight toxic potential of CuO-NPs on mature and larvae fish, both increased mortality rate and lower reproductive success, by increasing parturition time and reducing number of larvae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    L. Yan, Y. B. Zheng, F. Zhao, S. Li, X. Gao, B. Xu, P. S. Weiss, and Y. Zhao (2012). Chem. Soc. Rev.41, 97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    H. J. Jo, J. W. Choi, S. H. Lee, and S. W. Hong (2012). J. Hazard. Mater.227–228, 301.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. 3.

    A. M. Yalsuyi and M. F. Vajargah (2017). J. Environ. Treat. Tech.5, (1), 1.

    Google Scholar 

  4. 4.

    M. Rai, A. Yadav, and A. Gade (2009). J. Biotechnol. Adv.27, 76.

    CAS  Article  Google Scholar 

  5. 5.

    I. Krzyżewska, J. Kyzioł-Komosińska, C. Rosik-Dulewska, J. Czupioł, and P. Antoszczyszyn-Szpicka (2016). Arch. Environ. Prot.42, (1), 87.

    Article  Google Scholar 

  6. 6.

    M. F. Vajargah, S. A. Hossaini, and A. Hedayati (2013). J. Toxicol. Environ. Health Sci.5, (6), 106.

    CAS  Article  Google Scholar 

  7. 7.

    L. Song, M. G. Vijver, W. J. G. M. Peijnenburg, T. S. Galloway, and C. R. Tyler (2015). Chemosphere139, 181.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    A. M. Yalsuyi and M. F. Vajargah (2017). J. Coast. Life. Med.5, (4), 141.

    CAS  Article  Google Scholar 

  9. 9.

    M. Pagano, C. Porcino, M. Briglia, E. Fiorino, M. Vazzana, S. Silvestro, and C. Faggio (2017). Int. J. Environ. Res.11, (2), 207.

    CAS  Article  Google Scholar 

  10. 10.

    M. A. Burgos-Aceves, A. Cohen, G. Paolella, M. Lepretti, Y. Smith, C. Faggio, and L. Lionetti (2018). Sci. Total Environ.645, 79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    C. Faggio, V. Tsarpali, and S. Dailianis (2018). Sci. Total Environ.613, 220.

    Article  CAS  Google Scholar 

  12. 12.

    E. Fiorino, P. Sehonova, L. Plhalova, J. Blahova, Z. Svobodova, and C. Faggio (2018). Environ. Sci. Pollut. Res. Int.25, (9), 8542.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    M. F. Vajargah, M. R. Imanpoor, A. Shabani, A. Hedayati, and C. Faggio (2019). Microsc. Res. Tech. https://doi.org/10.1002/JEMT.23271.

    Article  Google Scholar 

  14. 14.

    A. Stara, R. Bellinvia, J. Velisek, A. Strouhova, A. Kouba, and C. Faggio (2019). Sci. Total Environ.665, 718.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    B. Nowack and T. D. Bucheli (2007). Environ. Pollut.150, (1), 5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Y. N. Chang, X. Zhang, J. Zhang, and G. Xing (2012). Materials5, 2850.

    CAS  PubMed Central  Article  Google Scholar 

  17. 17.

    A. Hedayati, M. F. Vajargah, A. M. Yalsuyi, S. Abarghoei, and M. Hajiahmadyan (2014). J. Coast. Life Med.2, (11), 841.

    CAS  Google Scholar 

  18. 18.

    C. Faggio, M. Pagano, R. Alampi, I. Vazzana, and M. R. Felice (2016). Aquat. Toxicol.180, 258.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    G. Capillo, S. Silvestro, M. Sanfilippo, E. Fiorino, G. Giangrosso, V. Ferrantelli, I. Vazzana, and C. Faggio (2018). Chem. Biodiversity. https://doi.org/10.1002/cbdv.201800044.

    Article  Google Scholar 

  20. 20.

    P. Sehonova, Z. Svobodova, P. Dolezelova, P. Vosmerova, and C. Faggio (2018). Sci. Total Environ.631–632, 789.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. 21.

    M. F. Vajargah, A. M. Yalsuyi, M. Sattari, and A. Hedayati (2018). J. Environ. Health Sci. Eng.5, (2), 61.

    CAS  Google Scholar 

  22. 22.

    A. Stara, J. Kubec, E. Zuskova, M. Buric, C. Faggio, A. Kouba, and J. Velisek (2019). Chemospere224, 616.

    CAS  Article  Google Scholar 

  23. 23.

    N. Humtsoe, R. Davoodi, B. G. Kulkarni, and B. Chavan (2007). Raff. Bull. Zool.14, 17.

    Google Scholar 

  24. 24.

    F. Fazio, C. Faggio, S. Marafioti, A. Torre, M. Sanfilippo, and G. Piccione (2012). Cah. Biol. Mar.53, 213.

    Google Scholar 

  25. 25.

    F. Fazio, S. Marafioti, A. Torre, M. Sanfilippo, M. Panzera, and C. Faggio (2013). Ichthyol. Res.60, (1), 36.

    Article  Google Scholar 

  26. 26.

    S. Subashkumar and M. Selvanayagam (2014). Int. J. Sci. Res. Publica4, (3), 2250.

    Google Scholar 

  27. 27.

    M. F. Vajargah and A. Hedayati (2014). J. Coast. Life Med.2, (7), 511–514.

    Google Scholar 

  28. 28.

    A. E. Magurran Evolutionary Ecology: The Trinidadian Guppy, 1st ed (Oxford University Press, New York, 2005), pp. 15–27.

    Book  Google Scholar 

  29. 29.

    F. Savorelli, L. Manfra, M. Croppo, A. Tornambè, D. Palazzi, S. Canepa, P. L. Trentini, A. M. Cicero, and C. Faggio (2017). Biol. Trace Elem. Res.177, (2), 384–393.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    V. Aliko, M. Qirjo, E. Sula, V. Morina, and C. Faggio (2018). Fish Shellfish Immunol.76, 101–109.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  31. 31.

    N. Gobi, B. Vaseeharan, R. Rekha, S. Vijayakumar, and C. Faggio (2018). Ecotoxicol. Environ. Saf.162, (2018), 147.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    M. M. H. C. M. Valko, H. Morris, and M. T. D. Cronin (2005). Curr. Med. Chem.12, (10), 1161.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    V. Aliko, G. Hajdaraj, A. Caci, and C. Faggio (2015). Braz. Arch. Biol. Technol.58, (5), 750.

    CAS  Article  Google Scholar 

  34. 34.

    G. Isani, M. L. Falcioni, G. Barucca, D. Sekar, G. Andreani, E. Carpenè, and G. Falcioni (2013). Ecotoxicol. Environ. Saf.97, 40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    M. F. Vajargah, A. M. Yalsuyi, A. Hedayati, and C. Faggio (2018). Microsc. Res. Tech.81, (7), 724–729.

    Article  CAS  Google Scholar 

  36. 36.

    C. Peng, C. Shen, S. Zheng, W. Yang, H. Hu, J. Liu, and J. Shi (2017). Nanomaterials7, (10), 326.

    PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    A. Keller, S. McFerran, A. Lazareva, and S. Suh (2013). J. Nanopart. Res.15, 1692.

    Article  Google Scholar 

  38. 38.

    A. H. Battez, R. González, J. L. Viesca, J. E. Fernández, J. M. DíazFernández, A. Machado, R. Chou, and J. Riba (2008). Wear265, (3–4), 422.

    Article  CAS  Google Scholar 

  39. 39.

    M. Ghane, B. Sadeghi, A. R. Jafari, and A. R. Paknejhad (2010). Int. J. Nano Dimens.1, (1), 33.

    Google Scholar 

  40. 40.

    X. Pan, J. E. Redding, P. A. Wiley, L. Wen, J. S. McConnell, and B. Zhang (2010). Chemosphere79, 113.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    M. A. Burgos-Aceves, A. Cohen, Y. Smith, and C. Faggio (2018). Ecotoxicol. Environ. Saf.148, 995–1000.

    CAS  Article  Google Scholar 

  42. 42.

    M. J. Moosavi and V. A. J. Shamushaki (2015). J. Aquacult. Res. Dev.6, (2), 305.

    Article  CAS  Google Scholar 

  43. 43.

    N. Adam, A. Vakurov, D. Knapen, and R. Blust (2015). J. Hazard. Mater.283, 416–422.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    T. L. Rocha, A. P. R. dos Santos, Á. T. Yamada, C. M. de Almeida Soares, C. L. Borges, A. M. Bailão, and S. M. T. Sabóia-Morais (2015). Environ. Toxicol. Pharmcol.40, (1), 175–186.

    CAS  Article  Google Scholar 

  45. 45.

    T. Dorrington, J. Zanette, F. L. Zacchi, J. J. Stegeman, and A. C. Bainy (2012). Aquat. Toxicol.15, 106.

    Article  CAS  Google Scholar 

  46. 46.

    A. P. R. Santos, T. L. Rocha, C. L. Borges, A. M. Bailão, C. M. Almeida Soares, and S. M. T. Sabóia-Morais (2017). Chemosphere168, 933.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  47. 47.

    A. M. Antunes, T. L. Rocha, F. S. Pires, M. A. Freitas, V. R. M. C. Leite, S. Arana, and S. M. T. Sabóia-Morais (2017). J. Appl. Toxicol.37, (9), 1098.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    S. Bao, Q. Lu, T. Fang, H. Dai, and C. Zhang (2015). Appl. Environ. Microbiol.81, (23), 8098.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    M. M. Chorehi, H. Ghaffari, S. A. Hossaini, E. H. N. Niazie, M. F. Vajargah, and A. Hedayati (2013). Int. J. Aquat. Biol.1, (6), 254.

    Google Scholar 

  50. 50.

    M. F. Vajargah and A. Hedayati (2017). Transylv. Rev. Syst Ecol. Res.19, (3), 85.

    Google Scholar 

  51. 51.

    A. M. Yalsuyi, A. Hedayati, M. F. Vajargah, and H. Mousavi-sabet (2017). J. Environ. Treat. Tech.5, (2), 83.

    Google Scholar 

  52. 52.

    M. Amiri, Z. Etemadifar, A. Daneshkazemi, and M. Nateghi (2017). J. Dent. Biomater.4, (1), 387.

    Google Scholar 

  53. 53.

    G. Song, W. Hou, Y. Gao, L. Lin, Z. Zhang, Q. Niu, R. Ma, L. Mu, and H. Wang (2016). Bot. Stud.57, (3), 2.

    Google Scholar 

  54. 54.

    R. T. Di Giulio and D. E. Hinton The Toxicology of Fishes, 1st ed (CRC Press, Boca Raton, 2008), p. 1096.

    Book  Google Scholar 

  55. 55.

    A. Kodric-Brown and P. F. Nicoletto (2001). Am. Nat.157, (3), 316.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    R. J. Griffitt, R. Weil, K. A. Hyndman, N. D. Denslow, K. Powers, D. Taylor, and D. S. Barber (2007). Environ. Sci. Technol.41, 8178.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    O. Duman and S. Tunc (2009). Microporous Mesoporous Mater.117, 331.

    CAS  Article  Google Scholar 

  58. 58.

    M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet, and M. R. Wiesner (2009). Nat. Nanotechnol.4, (10), 634.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    K. Midander, P. Cronholm, H. L. Karlsson, K. Elihn, L. Möller, C. Leygraf, and I. O. Wallinder (2009). Small5, (3), 389.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    G. Oberdorster, E. Oberdorster, and J. Oberdorster (2005). Environ. Health Perspect.113, (7), 823.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    K. W. Powers, M. Palazuelos, B. M. Moudgil, and S. M. Roberts (2007). Nanotoxicology1, (1), 42.

    CAS  Article  Google Scholar 

  62. 62.

    M. Ferrari (2008). Nat. Nanotechnol.3, (3), 131.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    A. Verma and F. Stellacci (2010). Small6, (1), 12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    U. S. EPA (EPA 2017). Technical Overview of Ecological Risk Assessment—Analysis Phase: Ecological Effects Characterization: Ecotoxicity Categories for Terrestrial and Aquatic Organisms. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-0.

  65. 65.

    A. Jahanbakhshi, A. Hedayati, and A. Pirbeigi (2015). Nanomed. J.2, (3), 195.

    Google Scholar 

  66. 66.

    S. Lin, Y. Zhao, Z. Ji, J. Ear, C. H. Chang, H. Zhang, C. Low-Kam, K. Yamada, H. Meng, X. Wang, and R. Liu (2013). Small9, (9–10), 1776.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    A. A. Abdel-Khalek, M. A. M. Kadry, S. R. Badran, and M. A. S. Marie (2015). J. Basic Appl. Zool.72, 43.

    CAS  Article  Google Scholar 

  68. 68.

    B. J. Shaw and R. D. Handy (2011). Environ. Int.37, 1083.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    A. Srinonate, W. Banlunara, P. Maneewattanapinyo, C. Thammacharoen, S. Ekgasit, and T. Kaewamatawong (2015). Thai. J. Vet. Med.45, (1), 81.

    Google Scholar 

  70. 70.

    J. S. Weis (2014). Toxics2, (2), 165.

    CAS  Article  Google Scholar 

  71. 71.

    M. F. Vajargah, A. M. Yalsuyi, and A. Hedayati (2018). J. Iran. Fish. Sci.17, (3), 564.

    Google Scholar 

  72. 72.

    M. F. Vajargah, A. M. Yalsuyi, and A. Hedayati (2017). J. Pollut.3, (4), 589.

    CAS  Google Scholar 

  73. 73.

    Y. Sun, G. Zhang, Z. He, Y. Wang, J. Cui, and Y. Li (2016). Int. J. Nanomed.11, 905.

    CAS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors thank all the people that helped them to complete this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Caterina Faggio.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest associated with this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forouhar Vajargah, M., Mohamadi Yalsuyi, A., Sattari, M. et al. Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata. J Clust Sci 31, 499–506 (2020). https://doi.org/10.1007/s10876-019-01664-y

Download citation

Keywords

  • Copper oxide nanoparticles
  • Poecilia reticulata
  • Parturition time
  • Reproductive success
  • Survival rate