Skip to main content
Log in

Structural, Optical and Antibacterial Properties of Green Synthesized Silver Nanoparticles (AgNPs) Using Justicia adhatoda L. Leaf Extract

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Recently, AgNPs were used as a potential candidate for the applications of the human contacting areas such as cosmetics, food and medicine. Based on the above facts, in the present investigation, synthesis of silver nanoparticle was done using Justicia adhatoda leaf extract. The AgNPs were synthesized by bioreduction method of silver nitrate at different concentrations of J. adhatoda leaf extract (10, 20, 30, 40 ml). It was characterized by a powder X-ray diffraction technique, SEM (Scanning Electron Microscope) with EDAX and FTIR (Fourier Transform Infrared Spectroscopy). It exhibited face centered cubic structure and the particle size was found to be 30 nm and the lattice strain (W–H plot) was 0.0079. The functional groups present in the compound were confirmed by the FTIR spectrum (424 cm−1 and 402 cm−1). In this work spherical morphology of the particles at different concentrations was identified by TEM (particles size 16–21 nm) and SEM images. The optical energy band gap was found to be 2.9 eV from the UV–Vis spectrum. Zeta potential of AgNPs was determined as − 17.2 nm. The antibacterial activity of the synthesized AgNPs was tested using both gram positive bacteria (Staphylococcus aureus) and gram negative bacteria (Escherichia coli) and concluded that it may be a harmful nanomedicine for respiratory track ailments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Mata, J. R. Nakkala, and S. R. Sadras (2015). Colloids Surf. B Biointerfaces.128, 276–286.

    Article  CAS  Google Scholar 

  2. P. Velmurugan, M. Cho, S.-S. Lim, S.-K. Seo, H. Myung, K.-S. Bang, S. Sivakumar, K.-M. Cho, and B.-T. Oh (2015). Mater. Lett.138, 272–275.

    Article  CAS  Google Scholar 

  3. K. Shameli, M. B. Ahmad, W. M. Z. Wan Yunus, N. A. Ibrahim, Y. Gharayebi, and S. Sedaghat (2010). Int. J. Nanomed.5, 1067–1077.

    Article  CAS  Google Scholar 

  4. K. Shameli, M. B. Ahmad, W. M. Z. Wan Yunus, et al. (2010). Int. J. Nanomed.5, 875–887.

    Article  CAS  Google Scholar 

  5. F. M. Reicha, A. Sarhan, M. I. Abdel-Hamid, and I. M. El-Sherbiny (2012). Carbohydr. Polym.89, 236–244. https://doi.org/10.1016/j.carbpol.2012.03.002.

    Article  CAS  PubMed  Google Scholar 

  6. K. Shameli, M. B. Ahmad, M. Zargar, W. M. Z. Wan Yunus, A. Rustaiyan, and N. A. Ibrahim (2010). Int. J. Nanomed.6, 581–590.

    Google Scholar 

  7. K. Shameli, M. B. Ahmad, W. M. Z. Wan Yunus, and N. A. Ibrahim (2010). Int. J. Nanomed.5, 743–751.

    Article  CAS  Google Scholar 

  8. K. Shameli, M. B. Ahmad, M. Zargar, W. M. Z. Wan Yunus, and N. A. Ibrahim (2011). Int. J. Nanomed.6, 331–341.

    Article  CAS  Google Scholar 

  9. K. Shameli, M. B. Ahmad, S. D. Jazayeri, et al. (2012). Int. J. Mol. Sci.13, 6639–6650.

    Article  CAS  Google Scholar 

  10. M. Ramayal and M. S. Subapriya (2012). Int. J. Pharm. Med. Biol. Sci.1, (1), 54–61.

    Google Scholar 

  11. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Biotechnol. Prog.22, 577–583. https://doi.org/10.1021/bp0501423.

    Article  CAS  PubMed  Google Scholar 

  12. A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde (2010). Colloids Surf. A Physicochem. Eng. Aspects368, 58–63.

    Article  CAS  Google Scholar 

  13. P. Sivakumar, C. Nethradevi, and S. Renganathan (2012). Asian J. Pharm. Clin. Res.5, (3), 97–101.

    Google Scholar 

  14. S. P. Dubey, M. Lahtinen, and E. Sillanpaa (2010). Process Biochem.45, 1065–1071.

    Article  CAS  Google Scholar 

  15. K. Sivaranjani and M. Meenakshisundaram (2013). Int. Res. J. Pharm.4, (1), 225–229.

    CAS  Google Scholar 

  16. D. Jain, H. K. Daima, S. Kachhwaha, and S. L. Kothari (2009). Digest J. Nanomater. Biostruct.4, 557–563.

    Google Scholar 

  17. B. Ankamwar, C. Damle, A. Ahmad, and M. Sastry (2005). J. Nanosci. Nanotechnol.5, (10), 1665–1671.

    Article  CAS  Google Scholar 

  18. R. Kirubha and G. Alagumuthu (2013). Asian J. Pharm. Clin. Res.6, (4), 60–64.

    Google Scholar 

  19. N. Ahmad, K. Shree, M. Srivastava, and R. Dutta (2014). Int. J. Pharmacol. Pharm. Sci.1, 28–31.

    CAS  Google Scholar 

  20. M. N. Nadagouda and R. S. Varma (2008). Green Chem.10, 859–862.

    Article  CAS  Google Scholar 

  21. R. Kirubha and G. Alagumuthu (2014). IJPRBS3, (5), 287–297.

    CAS  Google Scholar 

  22. J. Palanivelu, M. M. Kunjumon, A. Suresh, A. Nair, and C. Ramalingam (2015). J. Pharm. Sci. Res.7, (9), 690–695.

    CAS  Google Scholar 

  23. N. S. Paul and R. P. Yadav (2015). J. Biomed. Pharm. Sci.5, (45), 26–28.

    CAS  Google Scholar 

  24. A. Lalitha, R. Subbaiya, and P. Ponmurugan (2013). Int. J. Curr. Microbiol. Appl. Sci.2, (6), 228–235.

    Google Scholar 

  25. Karthik K, Dhuskodi S. Structural and optical properties of microwave-assisted CdO-NiO nanocomposite. in AIP Conf. Proc. 2016; 1731,050021.

  26. A. Sahai and N. Goswami (2014). Physica E.58, 130–137.

    Article  CAS  Google Scholar 

  27. S. Akhlaghi, M. Kalalee, S. Mazinani, et al. (2012). Thermochim Acta.527, 91–98.

    Article  CAS  Google Scholar 

  28. T. R. Tatarchuk, N. D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, and A. Shyichuk (2018). J. Alloys Compd.731, 1256–1266.

    Article  CAS  Google Scholar 

  29. B. Rajesh Babu and T. Tatarchuk (2018). Mater. Chem. Phys.207, 534–541.

    Article  CAS  Google Scholar 

  30. P. Logeswari, S. Silambarasan, and J. Abraham (2015). J. Saudi Chem. Soc.19, 311.

    Article  Google Scholar 

  31. M. Forough and K. Farhadi (2010). Turkish J. Eng. Environ. Sci.34, 281.

    CAS  Google Scholar 

  32. S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, and S. R. Pandian (2009). Colloids Surf. B Biointerfaces.74, 328–335.

    Article  CAS  Google Scholar 

  33. S. Gaikwad, A. Ingle, A. Gade, M. Rai, A. Falanga, N. Incoronato, et al. (2013). Int J. Nanomed.8, 4303–4314.

    Google Scholar 

  34. V. Revathi and K. Karthik (2018). J. Emerg. Technol. Innov. Res.5, (3), 1035–1039.

    Google Scholar 

  35. J. Mores, J. Elechiguerra, A. Camacho, H. Katherine, B. Juan, R. Jose Tapia, and J. Mifuel (2005). Nanotechnology16, 2346–2353.

    Article  Google Scholar 

  36. J. Kim, S. Sung, S. Moon, J. Choi, J. Kim, and D. Lee (2008). J. Microbiol. Biotechnol.18, 1482–1484.

    CAS  PubMed  Google Scholar 

  37. K. Karthik, S. Dhanuskodi, C. Gopinath, S. Prabukumar, and S. Sivaramakrishnan (2017). J. Mater. Sci. Mater. Electron.28, 11420–11429.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pricilla Jeyakumari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirumagal, N., Jeyakumari, A.P. Structural, Optical and Antibacterial Properties of Green Synthesized Silver Nanoparticles (AgNPs) Using Justicia adhatoda L. Leaf Extract. J Clust Sci 31, 487–497 (2020). https://doi.org/10.1007/s10876-019-01663-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01663-z

Keywords

Navigation