Ru-Dye Grafted CuS and Reduced Graphene Oxide (CuS/rGO) Composite: An Efficient and Photo Tunable Electrode for Dye Sensitized Solar Cells

  • K. K. Saravanan
  • P. SivaKarthikEmail author
Original Paper


The CuS@reduced graphene oxide (CuS/RGO) hybrid nanocomposite was synthesized by facile hydrothermal method and used as a photoelectrode material in photovoltaic applications. In the hydrothermal route, RGO is formed by the reduction of GO with simultaneous formation of CuS/RGO nanocomposites. The CuS/RGO nanocomposites was investigated using powder XRD, TEM, HR-TEM, Raman, XPS, DRS UV–Vis spectroscopy, Photoluminescence (PL) measurements. XRD and TEM results suggest that CuS crystalline with individual spherical like homogeneous nanoparticles sizes in the range of 45–35 nm, which is distributed throughout the RGO sheets. We further construct the flexible photoelectrodes by using CuS and RGO and studied the photovoltaic performance. Photovoltaic parameters, such as short-circuit photocurrent density, open circuit voltage, fill factor and conversion efficiency were found to be 16 mA/cm2, 0.71 V, 70.1% and 7.81% respectively, for CuS/RGO photoelectrode. The improved photo conversion efficiency of CuS/RGO is due to enhancing the electronic injection ability and reducing the photogenerated charge recombination. These photovoltaic results indicate a simple methodology for the low cost and effortless synthesis of an alternative CuS/RGO photoelectrode in high performance photovoltaic devices.


CuS Reduced graphene oxide Composites Photovoltaic cell Energy conversion 



  1. 1.
    L. Suganthi and A. A. Samuel (2012). Renew. Sustain. Energy. Rev. 16, 1223.CrossRefGoogle Scholar
  2. 2.
    M. Z. Iqbal and S. Khan (2018). Sol. Energy 160, 130.CrossRefGoogle Scholar
  3. 3.
    J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, and Y. Wei (2017). Chem. Soc. Rev. 46, 5975.CrossRefPubMedGoogle Scholar
  4. 4.
    M. S. Dresselhaus and I. L. Thomas (2001). Nature 414, 332.CrossRefPubMedGoogle Scholar
  5. 5.
    M. R. Narayan (2012). Renew. Sustain. Energy Rev. 16, 208.Google Scholar
  6. 6.
    A. V. Shah, R. Platz, and H. Keppner (1995). Sol. Energy Mater Solar Cells 38, 501.CrossRefGoogle Scholar
  7. 7.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson (2010). Chem. Rev. 110, 6595.CrossRefPubMedGoogle Scholar
  8. 8.
    M. Sumathi, A. Prakasam, and P. M. Anbarasan (2019). J. Clust. Sci. 30, 757.CrossRefGoogle Scholar
  9. 9.
    M. Yousefi, M. Sabet, M. Salavati-Niasari, and S. M. Hosseinpour-Mashkani (2012). J. Clust. Sci. 23, 491.CrossRefGoogle Scholar
  10. 10.
    M. Yousefi, M. Sabet, M. Salavati-Niasari, and H. Emadi (2012). J. Clust. Sci. 23, 511.CrossRefGoogle Scholar
  11. 11.
    M. Abdi-Jalebi, M. R. Mohammadi, and D. J. Fray (2014). J. Clust. Sci. 25, 1029.CrossRefGoogle Scholar
  12. 12.
    Z. Zarghami, M. Ramezani, and K. Motevalli (2016). J. Clust. Sci. 27, 1451.CrossRefGoogle Scholar
  13. 13.
    J. G. Radich, R. Dwyer, and P. V. J. Kamat (2011). Phys. Chem. Lett. 2, 2453.CrossRefGoogle Scholar
  14. 14.
    Z. Yang, C. Chen, C. Liu, C. Li, and H. Chang (2011). Adv. Energy Mater. 1, 259.CrossRefGoogle Scholar
  15. 15.
    Z. Yang, C. Chen, C. Liu, and H. Chang (2010). Chem. Commun. 46, 5485.CrossRefGoogle Scholar
  16. 16.
    Z. Tachan, M. Shalom, I. Hod, S. Ruhle, and S. Tirosh (2011). Zaban. J. Phys. Chem. C 115, 6162.CrossRefGoogle Scholar
  17. 17.
    J. Kundu, D. Pradhan, and A. C. S. Appl (2014). Mater. Interfaces. 6, 1823.CrossRefGoogle Scholar
  18. 18.
    X. Jiang, Y. Xie, J. Lu, W. He, L. Zhu, and Y. Qian (2010). J. Mater. Chem. 10, 2193.CrossRefGoogle Scholar
  19. 19.
    J. S. Chung and H. J. Sohn (2002). J. Power Sources. 108, 226.CrossRefGoogle Scholar
  20. 20.
    A. B. F. Martinson, J. W. Elam, and M. J. Pellin (2009). Appl. Phys. Lett. 94, 123107.CrossRefGoogle Scholar
  21. 21.
    M. Basu, A. K. Sinha, M. Pradnan, S. Sarkar, Y. Negishi, and T. Pal (2010). Environ. Sci. Technol. 44, 6313.CrossRefPubMedGoogle Scholar
  22. 22.
    S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff (2006). Nature. 442, 282.CrossRefPubMedGoogle Scholar
  23. 23.
    D. A. Brownson and C. E. Banks (2010). Analyst. 135, 2768.CrossRefPubMedGoogle Scholar
  24. 24.
    W. S. Hummers and R. E. Offeman (1958). J. Am. Chem. Soc. 80, 1339.CrossRefGoogle Scholar
  25. 25.
    S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, and M. Setkiewicz (2016). Sensors. 16, 103.CrossRefGoogle Scholar
  26. 26.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron. 25, 730.CrossRefGoogle Scholar
  27. 27.
    H. C. Tao, X. L. Yang, L. L. Zhang, and S. B. Ni (2014). J. Phys. Chem. Solids. 75, 1205.CrossRefGoogle Scholar
  28. 28.
    L. Fei, Q. L. Lin, B. Yuan, G. Chen, P. Xie, Y. L. Li, Y. Xu, S. G. Deng, S. Smirnov, and H. M. Luo (2013). ACS Appl. Mater. Interfaces. 5, 5330.CrossRefPubMedGoogle Scholar
  29. 29.
    M. Parthibavarman, S. Sathishkumar, M. Jayashree, and R. BoopathiRaja (2019). J. Clust. Sci. 30, 351.CrossRefGoogle Scholar
  30. 30.
    M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, and R. BoopathiRaja (2018). J. Iran. Chem. Soc. 15, 2789.CrossRefGoogle Scholar
  31. 31.
    J. Zhou, F. Zhao, X. Wang, Z. Li, Y. Zhang, and L. Yang (2006). J. Lumin. 237, 237.CrossRefGoogle Scholar
  32. 32.
    X. S. Hu, Y. Shen, Y. T. Zhang, and J. J. Nie (2017). J. Phys. Chem. Solid. 103, 201.CrossRefGoogle Scholar
  33. 33.
    M. Saranya, R. Ramachandran, P. Kollu, S. K. Jeong, and A. N. Grace (2015). RSC Adv. 5, 15831.CrossRefGoogle Scholar
  34. 34.
    J. Zhao, D. Liu, C. Gu, M. Zhu, S. O. Ryu, and J. Huang (2018). Mater. Chem. Phys. 217, 102.CrossRefGoogle Scholar
  35. 35.
    Z. Li, F. Gong, G. Zhou, and Z. S. Wang (2013). J. Phys. Chem. C. 117, 6561.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringUniversity College of EngineeringThirukkuvalaiIndia
  2. 2.Department of ChemistryUniversity College of EngineeringPanrutiIndia

Personalised recommendations