Advertisement

New Synthesis Method of N-Monosubstituted Ammonium-closo-Decaborates

  • A. P. ZhdanovEmail author
  • V. V. Voinova
  • I. N. Klyukin
  • A. S. Kubasov
  • K. Yu. Zhizhin
  • N. T. Kuznetsov
Original Paper
  • 25 Downloads

Abstract

In work, the process of interaction of nitrilium derivatives of the closo-decaborate anion with lithium aluminum hydride was studied. Reduction process proceeds under mild conditions and leads to the formation of N-alkylammonium-closo-decaborate with high yields and selectivity. For the structure of (NnBu4)[2-B10H9NH2CH2CH3] was confirmed by single-crystal X-ray diffraction.

Keywords

Nitrilium derivative Boron cluster Closo-decaborate Reduction process 

Notes

Acknowledgements

This study was supported by the Russian Science Foundation, Grant No. 18-73-10092.

References

  1. 1.
    M. Hanumantha Rao and K. Muralidharan (2013). Dalton Trans. 42, (24), 8854.  https://doi.org/10.1039/c3dt32834a.Google Scholar
  2. 2.
    I. B. Sivaev (2017). Chem. Heterocycl. Compd. 53, (6–7), 638.  https://doi.org/10.1007/s10593-017-2106-9.Google Scholar
  3. 3.
    P. Sharon, M. Afri, S. Mitlin, L. Gottlieb, B. Schmerling, D. Grinstein, S. Welner, and A. A. Frimer (2019). Polyhedron 157, 71.  https://doi.org/10.1016/j.poly.2018.09.055.Google Scholar
  4. 4.
    E. Hey-Hawkins and C. Vinas Teixidor (eds.) Boron-Based Compounds: Potential and Emerging Applications in Medicine (Wiley, 2018), p. 470.Google Scholar
  5. 5.
    V. I. Bregadze, I. B. Sivaev, in N. S. Hosmane (eds.), Boron Science: New Technologies and Applications (CRC Press, 2011), p. 181.Google Scholar
  6. 6.
    A. Semioshkin, A. Ilinova, I. Lobanova, V. Bregadze, E. Paradowska, M. Studzińska, A. Jabłońska, and Z. Lesnikowski (2013). Tetrahedron. 69, (37), 8034.  https://doi.org/10.1016/j.tet.2013.06.100.Google Scholar
  7. 7.
    R. Satapathy, B. P. Dash, C. S. Mahanta, B. R. Swain, B. B. Jena, and N. S. Hosmane (2015). J. Organomet. Chem. 798, 13.  https://doi.org/10.1016/j.jorganchem.2015.06.027.Google Scholar
  8. 8.
    F. Abi-Ghaida, S. Clément, A. Safa, D. Naoufal, and A. Mehdi (2015). J. Nanomater. 2015, (9), 1.  https://doi.org/10.1155/2015/608432.Google Scholar
  9. 9.
    O. G. Shakirova, V. A. Daletskii, L. G. Lavrenova, S. V. Trubina, S. B. Erenburg, K. Y. Zhizhin, and N. T. Kuzhetsov (2013). Russ. J. Inorg. Chem. 58, (6), 650.  https://doi.org/10.1134/S0036023613060211.Google Scholar
  10. 10.
    A. Jankowiak, A. Baliński, J. E. Harvey, K. Mason, A. Januszko, P. Kaszyński, V. G. Young, and A. Persoons (2013). J. Mater. Chem. C. 1, (6), 1144.  https://doi.org/10.1039/c2tc00547f.Google Scholar
  11. 11.
    L. Duchêne, R.-S. Kühnel, D. Rentsch, A. Remhof, H. Hagemann, and C. Battaglia (2017). Chem. Commun. 53, (30), 4195.  https://doi.org/10.1039/C7CC00794A.Google Scholar
  12. 12.
    K. Shelly, C. B. Knobler, and M. F. Hawthorne (1992). Inorg. Chem. 31, (13), 2889.  https://doi.org/10.1021/ic00039a041.Google Scholar
  13. 13.
    W. Preetz and C. Nachtigal (1995). Zeitschrift fur Anorg. und Allg. Chemie 621, (10), 1632.  https://doi.org/10.1002/zaac.19956211003.Google Scholar
  14. 14.
    S. El Anwar, J. Holub, O. Tok, T. Jelínek, Z. Růžičková, L. Fojt, V. Šolínová, V. Kašička, and B. Grüner (2018). J. Organomet. Chem. 865, 189.  https://doi.org/10.1016/j.jorganchem.2018.02.050.Google Scholar
  15. 15.
    A. P. Zhdanov, K. A. Zhdanova, A. Y. Bykov, V. K. Kochnev, M. S. Grigoriev, K. Y. Zhizhin, and N. T. Kuznetsov (2018). Polyhedron. 139, 125.  https://doi.org/10.1016/j.poly.2017.09.050.Google Scholar
  16. 16.
    I. B. Sivaev, A. V. Prikaznov, and D. Naoufal (2010). Collect. Czechoslov. Chem. Commun. 75, (11), 1149.  https://doi.org/10.1135/cccc2010054.Google Scholar
  17. 17.
    A. S. Kubasov, E. Y. Matveev, E. S. Turyshev, I. N. Polyakova, K. Y. Zhizhin, and N. T. Kuznetsov (2017). Dokl. Chem. 477, (1), 257.  https://doi.org/10.1134/S0012500817110088.Google Scholar
  18. 18.
    K. Y. Zhizhin, V. N. Mustyatsa, E. Y. Matveev, V. V. Drozdova, N. A. Votinova, I. N. Polyakova, and N. T. Kuznetsov (2003). Russ. J. Inorg. Chem. 48, (5), 671.Google Scholar
  19. 19.
    K. Y. Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov (2010). Russ. J. Inorg. Chem. 55, (14), 2089.  https://doi.org/10.1134/S0036023610140019.Google Scholar
  20. 20.
    I. N. Klyukin, A. P. Zhdanov, E. Y. Matveev, G. A. Razgonyaeva, M. S. Grigoriev, K. Y. Zhizhin, N. T. Kuznetsov (2014). Inorg. Chem. Commun. 50.  https://doi.org/10.1016/j.inoche.2014.10.008.
  21. 21.
    I. N. Klyukin, A. S. Kubasov, I. P. Limarev, A. P. Zhdanov, E. Y. Matveev, I. N. Polyakova, K. Y. Zhizhin, and N. T. Kuznetsov (2015). Polyhedron. 101, 215.  https://doi.org/10.1016/j.poly.2015.09.025.Google Scholar
  22. 22.
    A. V. Prikaznov, A. V. Shmal’ko, I. B. Sivaev, P. V. Petrovskii, V. I. Bragin, A. V. Kisin, V. V. Bregadze (2011). Polyhedron. 30, (9), 1494.  https://doi.org/10.1016/j.poly.2011.02.055.
  23. 23.
    A. S. Kubasov, E. Y. Matveev, V. M. Retivov, S. S. Akimov, G. A. Razgonyaeva, I. N. Polyakova, N. A. Votinova, K. Y. Zhizhin, and N. T. Kuznetsov (2014). Russ. Chem. Bull. 63, (1), 187.  https://doi.org/10.1007/s11172-014-0412-2.Google Scholar
  24. 24.
    D. S. Wilbur, M.-K. Chyan, D. K. Hamlin, and M. A. Perry (2009). Bioconjug. Chem. 20, (3), 591.  https://doi.org/10.1021/bc800515d.Google Scholar
  25. 25.
    D. S. Wilbur, M.-K. Chyan, D. K. Hamlin, H. Nguyen, and R. L. Vessella (2011). Bioconjug. Chem. 22, (6), 1089.  https://doi.org/10.1021/bc1005625.Google Scholar
  26. 26.
    D. S. Wilbur, M. Chyan, H. Nakamae, Y. Chen, D. K. Hamlin, E. B. Santos, B. T. Kornblit, and B. M. Sandmaier (2012). Bioconjug. Chem. 23, (3), 409.  https://doi.org/10.1021/bc200401b.Google Scholar
  27. 27.
    D. S. Wilbur, M. K. Chyan, D. K. Hamlin, and M. A. Perry (2010). Nucl. Med. Biol. 37, (2), 167.  https://doi.org/10.1016/j.nucmedbio.2009.10.004.Google Scholar
  28. 28.
    D. K. Hamlin, R. C. Emery, E. F. Dorman, M.-K. Chyan, D. R. Woodle, J. J. Orozco, D. J. Green, A. L. Kenoyer, D. S. Wilbur, and M. Nartea (2018). PLoS One. 13, (10), e0205135.  https://doi.org/10.1371/journal.pone.0205135.Google Scholar
  29. 29.
    A. P. Zhdanov, M. V. Lisovsky, L. V. Goeva, G. A. Razgonyaeva, I. N. Polyakova, K. Y. Zhizhin, and N. T. Kuznetsov (2009). Russ. Chem. Bull. 58, (8), 1694.  https://doi.org/10.1007/s11172-009-0234-9.Google Scholar
  30. 30.
    A. P. Zhdanov, I. N. Polyakova, G. A. Razgonyaeva, K. Y. Zhizhin, and N. T. Kuznetsov (2011). Russ. J. Inorg. Chem. 56, (6), 847.  https://doi.org/10.1134/S003602361106026X.Google Scholar
  31. 31.
    A. L. Mindich, N. A. Bokach, M. L. Kuznetsov, M. Haukka, A. P. Zhdanov, K. Y. Zhizhin, S. A. Miltsov, N. T. Kuznetsov, V. Y. Kukushkin (2012). Chempluschem. 77, (12).  https://doi.org/10.1002/cplu.201200257.
  32. 32.
    D. S. Bolotin, V. K. Burianova, A. S. Novikov, M. Y. Demakova, C. Pretorius, P. P. Mokolokolo, A. Roodt, N. A. Bokach, V. V. Suslonov, A. P. Zhdanov (2016). Organometallics. 35, (20).  https://doi.org/10.1021/acs.organomet.6b00678.
  33. 33.
    E. A. Daines, D. S. Bolotin, N. A. Bokach, V. V. Gurzhiy, A. P. Zhdanov, K. Y. Zhizhin, N. T. Kuznetsov (2018). Inorganica Chim. Acta. 471.  https://doi.org/10.1016/j.ica.2017.11.054.
  34. 34.
    A. L. Mindich, N. A. Bokach, F. M. Dolgushin, M. Haukka, L. A. Lisitsyn, A. P. Zhdanov, K. Y. Zhizhin, S. A. Miltsov, N. T. Kuznetsov, V. Y. Kukushkin (2012). Organometallics. 31, (5).  https://doi.org/10.1021/om200993f.
  35. 35.
    A. L. Mindich, N. A. Bokach, M. L. Kuznetsov, G. L. Starova, A. P. Zhdanov, K. Y. Zhizhin, S. A. Miltsov, N. T. Kuznetsov, and V. Y. Kukushkin (2013). Organometallics. 32, (21), 6576.  https://doi.org/10.1021/om400892x.Google Scholar
  36. 36.
    V. Y. Kukushkin and A. J. Pombeiro (2002). Chem. Rev. 102, (5), 1771.  https://doi.org/10.1021/cr0103266.Google Scholar
  37. 37.
    D. B. G. Williams and M. Lawton (2010). J. Org. Chem. 75, (24), 8351.  https://doi.org/10.1021/jo101589h.Google Scholar
  38. 38.
    APEX2. Version 2.1-0. (Bruker AXS Inc. Madison, Wisconsin), 2006.Google Scholar
  39. 39.
    L. Palatinus and G. Chapuis (2007). J. Appl. Crystallogr. 40, (4), 786.  https://doi.org/10.1107/S0021889807029238.Google Scholar
  40. 40.
    SADABS-2004/1. (Bruker AXS Inc. Madison, Wisconsin), 2004.Google Scholar
  41. 41.
    G. M. Sheldrick (2015). Acta Crystallogr. Sect. A Found. Crystallogr. 71, (1), 3.  https://doi.org/10.1107/S2053273314026370.Google Scholar
  42. 42.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, (2), 339.  https://doi.org/10.1107/S0021889808042726.Google Scholar
  43. 43.
    D. Dou, I. J. Mavunkal, J. A. K. Bauer, C. B. Knobler, M. F. Hawthorne, and S. G. Shore (1994). Inorg. Chem. 33, (26), 6432.  https://doi.org/10.1021/ic00104a069.Google Scholar
  44. 44.
    A. P. Zhdanov, A. Y. Bykov, A. S. Kubasov, I. N. Polyakova, G. A. Razgonyaeva, K. Y. Zhizhin, and N. T. Kuznetsov (2017). Russ. J. Inorg. Chem. 62, (4), 468.  https://doi.org/10.1134/S0036023617040210.Google Scholar
  45. 45.
    V. Sícha, J. Plesek, M. Kvícalová, I. Císarová, and B. Grüner (2009). Dalton Trans. 5, 851.  https://doi.org/10.1039/b814941k.Google Scholar
  46. 46.
    I. B. Sivaev, N. A. Votinova, V. I. Bragin, Z. A. Starikova, L. V. Goeva, V. I. Bregadze, and S. Sjöberg (2002). J. Organomet. Chem. 657, (1–2), 163.  https://doi.org/10.1016/S0022-328X(02)01419-5.Google Scholar
  47. 47.
    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor (1987). J. Chem. Soc. Perkin Trans. 2. 12, S1.  https://doi.org/10.1039/p298700000s1.
  48. 48.
    M. F. Hawthorne, K. Shelly, and F. Li (2002). Chem. Commun. (Camb). 6, 547.Google Scholar
  49. 49.
    W. E. Piers, S. C. Bourke, and K. D. Conroy (2005). Angew. Chemie Int. Ed. 44, (32), 5016.  https://doi.org/10.1002/anie.200500402.Google Scholar
  50. 50.
    M. Bowden, D. J. Heldebrant, A. Karkamkar, T. Proffen, G. K. Schenter, and T. Autrey (2010). Chem. Commun. 46, (45), 8564.  https://doi.org/10.1039/c0cc03249b.Google Scholar
  51. 51.
    Z. Huang, H. K. Lingam, X. Chen, S. Porter, A. Du, P. M. Woodard, S. G. Shore, and J. C. Zhao (2013). RSC Adv. 3, (20), 7460.  https://doi.org/10.1039/c3ra22836c.Google Scholar
  52. 52.
    O. J. Metters, A. M. Chapman, A. P. M. Robertson, C. H. Woodall, P. J. Gates, D. F. Wass, and I. Manners (2014). Chem. Commun. 50, (81), 12146.  https://doi.org/10.1039/C4CC05145A.Google Scholar
  53. 53.
    R. J. Less, R. García-Rodríguez, H. R. Simmonds, L. K. Allen, A. D. Bond, and D. S. Wright (2016). Chem. Commun. 52, (18), 3650.  https://doi.org/10.1039/c6cc00088f.Google Scholar
  54. 54.
    T. M. Douglas, A. B. Chaplin, A. S. Weller, X. Yang, and M. B. Hall (2009). J. Am. Chem. Soc. 131, (42), 15440.  https://doi.org/10.1021/ja906070r.Google Scholar
  55. 55.
    H. C. Johnson, A. P. M. Robertson, A. B. Chaplin, L. J. Sewell, A. L. Thompson, M. F. Haddow, I. Manners, and A. S. Weller (2011). J. Am. Chem. Soc. 133, (29), 11076.  https://doi.org/10.1021/ja2040738.Google Scholar
  56. 56.
    X. Chen, J. Gallucci, C. Campana, Z. Huang, H. K. Lingam, S. G. Shore, and J. C. Zhao (2012). Chem. Commun. 48, (64), 7943.  https://doi.org/10.1039/c2cc33621a.Google Scholar
  57. 57.
    W. C. Ewing, P. J. Carroll, and L. G. Sneddon (2013). Inorg. Chem. 52, (18), 10690.  https://doi.org/10.1021/ic401844m.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. P. Zhdanov
    • 1
    • 2
    Email author
  • V. V. Voinova
    • 1
    • 2
  • I. N. Klyukin
    • 1
  • A. S. Kubasov
    • 1
  • K. Yu. Zhizhin
    • 1
  • N. T. Kuznetsov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  2. 2.Lobachevsky State University of Nizhni NovgorodNizhnij NovgorodRussia

Personalised recommendations