Two New NIR Luminescencent Er(III) Coordination Polymers with Potential Application Optical Amplification Devices

  • Yasemin AcarEmail author
  • Mustafa Burak Coban
  • Elif Gungor
  • Hulya KaraEmail author
Original Paper


Two new Er(III)-cluster-based coordination compounds have been synthesized by hydrothermal technique using monosodium 2-sulfoterephthalate (2-stp) and 4,4′-bipyridyl (4,4′-bpy) ligands. Depending on synthetic procedure, monomeric and polymeric Er(III) products, isolated as {[Er(2-stp)2(H2O)6]0.2(4,4′-bipy)0.4(H2O)}, 1 and {[Er(2-stp)(4,4′-bipy)(H2O)](H2O)}n, 2. Both compounds have been characterized by elemental analysis, FT-IR, UV–visible and single-crystal X-ray diffraction and solid-state photoluminescence. The X-ray structure analyses show that Er atom is surrounded by two 2-stp ligands which have monodentate connection mode forming a monomeric structure in compound 1. However, in compound 2, Er atoms are coordinated by four bridging 2-stp ligands which adopt a hexadentate connection mode to form a central symmetrically dimeric building unit. The photoluminescence spectrums of the compounds have been exhibited intense blue emission for 1 and cyan-blue emission for 2. The band observed in NIR region at 1532 nm (for 1) and 1540 nm (for 2) are the typical ErIII emission. The excellent NIR luminescent properties, indicating their promising potential applications as gain medium materials in optical amplification devices.


Er(III) cluster X-ray structure Photoluminescence 



The authors thanks to the Research Funds of Balikesir University (Grant No. BAP-2017/183) for the financial support, Dr. Muhittin Aygun and Dokuz Eylül University (Grant No. 2010.KB.FEN.13) for the use of the Agilent Xcalibur Eos diffractometer and also to BUBTAM (Balikesir University Science and Technology Application and Research Center) for the use of the Photoluminescence Spectrometer.

Supplementary material

10876_2019_1623_MOESM1_ESM.docx (83 kb)
Supplementary material 1 (DOCX 83 kb)


  1. 1.
    B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, and S. Dai (2006). Angew. Chem. Int. Ed. 45, 1390.CrossRefGoogle Scholar
  2. 2.
    C. Biswas, P. Mukherjee, M. G. B. Drew, C. J. Gómez-García, J. M. Clemente-Juan, and A. Ghosh (2007). Inorg. Chem. 46, 10771.CrossRefGoogle Scholar
  3. 3.
    J. J. I. Perry, J. A. Perman, and M. J. Zaworotko (2009). ChemInform 40, 1400.Google Scholar
  4. 4.
    D. Zhao, D. Yuan, and H.-C. Zhou (2008). Energy Environ. Sci. 1, 222.CrossRefGoogle Scholar
  5. 5.
    M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi (2008). J. Am. Chem. Soc. 130, 12639.CrossRefGoogle Scholar
  6. 6.
    W. Zhang, H. Y. Ye, and R. G. Xiong (2009). Coord. Chem. Rev. 253, 2980.CrossRefGoogle Scholar
  7. 7.
    D. Shi, Y. Ren, H. Jiang, B. Cai, and J. Lu (2012). Inorg. Chem. 51, 6498.CrossRefGoogle Scholar
  8. 8.
    R. Decadt, K. Van Hecke, D. Depla, K. Leus, D. Weinberger, I. Van Driessche, P. Van Der Voort, and R. Van Deun (2012). Inorg. Chem. 51, 11623.CrossRefGoogle Scholar
  9. 9.
    G. Oylumluoglu, M. B. Coban, C. Kocak, M. Aygun, and H. Kara (2017). J. Mol. Struct. 1146, 356.CrossRefGoogle Scholar
  10. 10.
    G. Oylumluoglu (2018). J. Clust. Sci. 29, 649.CrossRefGoogle Scholar
  11. 11.
    Y. X. Ren, M. An, H. M. Chai, M. L. Zhang, and J. J. Wang (2015). Zeitschrift Fur Anorg. Und Allg. Chemie 641, 525.CrossRefGoogle Scholar
  12. 12.
    M. B. Coban, U. Erkarslan, G. Oylumluoglu, M. Aygun, and H. Kara (2016). Inorganica Chim. Acta 447, 87.CrossRefGoogle Scholar
  13. 13.
    M. B. Coban, C. Kocak, H. Kara, M. Aygun, and A. Amjad (2017). Mol. Cryst. Liq. Cryst. 648, 202.CrossRefGoogle Scholar
  14. 14.
    M. B. Coban, A. Amjad, M. Aygun, and H. Kara (2017). Inorganica Chim. Acta 455, 25.CrossRefGoogle Scholar
  15. 15.
    M. B. Coban (2018). J. Mol. Struct. 1162, 109.CrossRefGoogle Scholar
  16. 16.
    S. Chooset, A. Kantacha, K. Chainok, and S. Wongnawa (2018). Inorganica Chim. Acta 471, 493.CrossRefGoogle Scholar
  17. 17.
    D. H. Kim, H. S. Kim, C. H. Kwak, J. H. Lee, S. C. Jung, H. G. Ahn, and M. C. Chung (2010). J. Nanosci. Nanotechnol. 10, 3420.CrossRefGoogle Scholar
  18. 18.
    J. P. Leonard and T. Gunnlaugsson (2005). J. Fluoresc. 15, 585.CrossRefGoogle Scholar
  19. 19.
    J. C. G. Bünzli (2006). Acc. Chem. Res. 39, 53.CrossRefGoogle Scholar
  20. 20.
    M. A. Katkova, A. P. Pushkarev, T. V. Balashova, A. N. Konev, G. K. Fukin, S. Y. Ketkov, and M. N. Bochkarev (2011). J. Mater. Chem. 21, 16611.CrossRefGoogle Scholar
  21. 21.
    L. F. Marques, H. P. Santos, C. C. Correa, J. A. L. C. Resende, R. R. da Silva, S. J. L. Ribeiro, and F. C. Machado (2016). Inorganica Chim. Acta 451, 41.CrossRefGoogle Scholar
  22. 22.
    P. Martín-Ramos, M. D. Miranda, M. R. Silva, M. E. S. Eusebio, V. Lavín, and J. Martín-Gil (2013). Polyhedron 65, 187.CrossRefGoogle Scholar
  23. 23.
    P. Martín-Ramos, M. R. Silva, C. Coya, C. Zaldo, Á. L. Álvarez, S. Álvarez-García, A. M. Matos Beja, and J. Martín-Gil (2013). J. Mater. Chem. C 1, 2725.CrossRefGoogle Scholar
  24. 24.
    P. Martín-Ramos, C. Coya, Á. L. Álvarez, M. Ramos Silva, C. Zaldo, J. A. Paixão, P. Chamorro-Posada, and J. Martín-Gil (2013). J. Phys. Chem. C 117, 10020.CrossRefGoogle Scholar
  25. 25.
    S. V. Eliseeva and J. C. G. Bünzli (2011). New J. Chem. 35, 1165.CrossRefGoogle Scholar
  26. 26.
    A. Mech, A. Monguzzi, F. Meinardi, J. Mezyk, G. Macchi, and R. Tubino (2010). J. Am. Chem. Soc. 132, 4574.CrossRefGoogle Scholar
  27. 27.
    S. Penna, A. Reale, R. Pizzoferrato, G. M. Tosi Beleffi, D. Musella, and W. P. Gillin (2007). Appl. Phys. Lett. 91, 021106.CrossRefGoogle Scholar
  28. 28.
    G. M. Sheldrick (2015). Acta Crystallogr. Sect. C. Struct. Chem. 71, 3.Google Scholar
  29. 29.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
  30. 30.
    A. L. Spek (2009). Acta Crystallogr. Sect. D Biol. Crystallogr. 65, 148.CrossRefGoogle Scholar
  31. 31.
    Q. Zhong, H. Wang, G. Qian, Z. Wang, J. Zhang, J. Qiu, and M. Wang (2006). Inorg. Chem. 45, 4537.CrossRefGoogle Scholar
  32. 32.
    P. Martín-Ramos, P. S. P. Silva, P. Chamorro-Posada, M. R. Silva, B. F. Milne, F. Nogueira, and J. Martín-Gil (2015). J. Lumin. 162, 41.CrossRefGoogle Scholar
  33. 33.
    Z. Ahmed, R. E. Aderne, J. Kai, J. A. L. C. Resende, H. I. Padilla-Chavarría, and M. Cremona (2017). RSC Adv. 7, 18239.CrossRefGoogle Scholar
  34. 34.
    U. Erkarslan, A. Donmez, H. Kara, M. Aygun, and M. B. Coban (2018). J. Clust. Sci. 29, 1177.CrossRefGoogle Scholar
  35. 35.
    Z. Wang, S. Zheng, Z. Markus, M. Kou-Lin, H.-J. You, and X.-Z. Yu (2002). Inorg. Chem. Commun. 5, 230.CrossRefGoogle Scholar
  36. 36.
    Z. Lu, L. Wen, J. Yao, H. Zhu, and Q. Meng (2006). CrystEngComm 8, 847.CrossRefGoogle Scholar
  37. 37.
    S. Bibi, M. Sharifah, N. S. Abdul Manan, T. Huma, B. M. Yamin, and S. N. Abdul Halim (2018). Transit. Met. Chem. 43, 53.CrossRefGoogle Scholar
  38. 38.
    J. L. Chen, Y. S. Luo, G. P. Gao, J. L. Zhao, L. Qiu, N. Liu, L. H. He, S. J. Liu, and H. R. Wen (2016). Polyhedron 117, 388.CrossRefGoogle Scholar
  39. 39.
    Y. Acar, H. Kara, E. Gungor, and M. B. Coban (2018). Mol. Cryst. Liq. Cryst. 664, 165.CrossRefGoogle Scholar
  40. 40.
    L. Vittaya, N. Leesakul, S. Saithong, S. Phongpaichit, P. Chumponanomakun, T. Boonprab, K. Chainok, and Y. Tantirungrotechai (2017). Sci. Asia 43, 175.CrossRefGoogle Scholar
  41. 41.
    M. B. Coban (2019). J. Mol. Struct. 1177, 331.CrossRefGoogle Scholar
  42. 42.
    S. Bibi, S. Mohamad, N. S. Abdul Manan, J. Ahmad, M. A. Kamboh, S. M. Khor, B. M. Yamin, and S. N. Abdul Halim (2017). J. Mol. Struct. 1141, 31.CrossRefGoogle Scholar
  43. 43.
    X. Sun, B. Li, L. Song, J. Gong, and L. Zhang (2010). J. Lumin. 130, 1343.CrossRefGoogle Scholar
  44. 44.
    W. Wu, X. Zhang, A. Y. Kornienko, G. A. Kumar, D. Yu, T. J. Emge, R. E. Riman, and J. G. Brennan (2018). Inorg. Chem. 57, 1912.CrossRefGoogle Scholar
  45. 45.
    S. Destri, M. Pasini, W. Porzio, F. Rizzo, G. Dellepiane, M. Ottonelli, G. Musso, F. Meinardi, and L. Veltri (2007). J. Lumin. 127, 601.CrossRefGoogle Scholar
  46. 46.
    P. Martín-Ramos, P. Chamorro-Posada, M. Ramos Silva, P. S. Pereira Da Silva, I. R. Martín, F. Lahoz, V. Lavín, and J. Martín-Gil (2015). Opt. Mater. (Amst). 41, 139.CrossRefGoogle Scholar
  47. 47.
    C. Q. Wan, X. Li, C. Y. Wang, and X. Qiu (2009). J. Mol. Struct. 930, 32.CrossRefGoogle Scholar
  48. 48.
    S. Sarkar, V. N. K. B. Adusumalli, V. Mahalingam, and J. A. Capobianco (2015). Phys. Chem. Chem. Phys. 17, 17577.CrossRefGoogle Scholar
  49. 49.
    R. Van Deun, P. Nockemann, C. Görller-Walrand, and K. Binnemans (2004). Chem. Phys. Lett. 397, 447.CrossRefGoogle Scholar
  50. 50.
    F. Artizzu, M. L. Mercuri, A. Serpe, and P. Deplano (2011). Coord. Chem. Rev. 255, 2514.CrossRefGoogle Scholar
  51. 51.
    Q. Sun, P. Yan, W. Niu, W. Chu, X. Yao, G. An, and G. Li (2015). RSC Adv. 5, 65856.CrossRefGoogle Scholar
  52. 52.
    D. Liu, C. Li, Y. Xu, D. Zhou, H. Wang, P. Sun, and H. Jiang (2017). Polymer (Guildf). 113, 274.CrossRefGoogle Scholar
  53. 53.
    S. G. Roh, N. S. Baek, K. S. Hong, J. B. Oh, and H. K. Kim (2004). Mol. Cryst. Liq. Cryst. 425, 167.CrossRefGoogle Scholar
  54. 54.
    J. M. Lehn (1990). Angew. Chem. Int. Ed. Engl. 29, 1304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and ArtBalikesir UniversityBalıkesirTurkey
  2. 2.Center of Science and Technology Application and ResearchBalikesir UniversityBalıkesirTurkey
  3. 3.Department of Energy, Graduate School of Natural and Applied SciencesMugla Sıtkı Kocman UniversityMuglaTurkey

Personalised recommendations