Superalkali–Superhalogen Complexes as Versatile Materials for Hydrogen Storage: A Theoretical Study

  • Leila SaediEmail author
  • Mohammad Dodangi
  • Arefeh Mohammadpanaardakan
  • Mitra EghtedariEmail author
Original Paper


In the present work, we have studied superhalogen (Al13)–superalkali (M3O, M = Li, Na, and K) assemblages as versatile materials for hydrogen storage. In the present study, we suggest an interesting material to form a sets of typical donor–acceptor frameworks with high hydrogen storage performance via linking the superalkalis M3O to the superhalogen Al13. Our density functional theory (DFT) calculations reveal that the band gap energy of Al13 is decreased by attaching of the M3O superalkalis. Also, we found that the M3O species lowered the band gap energy of Al13 by more than 32% and converted it to an n-type semiconductor. Hydrogen adsorption on Al13–M3O (M = Li, Na, and K) is explored by DFT calculations and the results are compared with the hydrogen adsorption on the Al13–M (Li, Na, and K) systems. We found that the Al13–M3O systems show higher hydrogen storage performance as compared to the Al13–M systems. In fact, the Al13–M3O with three alkali metals show high-capacity hydrogen storage than the Al13–M systems. Among the six Al13–M and Al13–M3O systems, the maximum adsorption energy and the higher capacity hydrogen storage is related to the hydrogen adsorption on the Al13–Li3O. Our study exhibits that the Al13–Li3O is a promising material for hydrogen storage.


Al13 nanocluster M3Superhalogen Superalkali Hydrogen storage Density functional theory 



The authors are grateful to Islamic Azad University-Iran for computational resources and financial supports.


  1. 1.
    L. Schlapbach (2009). Nature 460, 809.CrossRefGoogle Scholar
  2. 2.
    A. Mohajeri and A. Omidvar (2018). Synth. Met. 241, 39.CrossRefGoogle Scholar
  3. 3.
    A. Omidvar (2017). Chem. Phys. 493, 85.CrossRefGoogle Scholar
  4. 4.
    A. Omidvar and A. Mohajeri (2017). Int. J. Hydrog. Energy 42, 12327.CrossRefGoogle Scholar
  5. 5.
  6. 6.
    S. K. Bhatia and A. L. Myers (2006). Langmuir 22, 1688.CrossRefGoogle Scholar
  7. 7.
    R. E. Morris and P. S. Wheatley (2008). Angew. Chem. Int. Ed. 47, 4966.CrossRefGoogle Scholar
  8. 8.
    J. Niu, B. K. Rao, and P. Jena (1992). Phys. Rev. Lett. 68, 2277.CrossRefGoogle Scholar
  9. 9.
    B. K. Rao and P. Jena (1992). Europhys. Lett. 20, 307.CrossRefGoogle Scholar
  10. 10.
    J. Niu, B. K. Rao, P. Jena, and M. Mannien (1995). Phys. Rev. B 51, 4475.CrossRefGoogle Scholar
  11. 11.
    P. Jena (2011). Chem. Lett. 2, 206.Google Scholar
  12. 12.
    J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen (2010). PNAS 16, 2801.CrossRefGoogle Scholar
  13. 13.
    Q. Sun, P. Jena, Q. Wang, and M. Marquez (2006). J. Am. Chem. Soc. 128, 9741.CrossRefGoogle Scholar
  14. 14.
    H. Ren, C. Cui, X. Li, and Y. Liu (2017). Int. J. Hydrog. Energy 42, 312.CrossRefGoogle Scholar
  15. 15.
    C. Ataca, E. Aktuerk, S. Ciraci, and H. Ustunel (2008). Appl. Phys. Lett. 93, 043123.CrossRefGoogle Scholar
  16. 16.
    J. Zhou, Q. Wang, Q. Sun, and P. Jena (2011). J. Phys. Chem. C 115, 6136.CrossRefGoogle Scholar
  17. 17.
    S. Li and P. Jena (2008). Phys. Rev. B 77, 193101.CrossRefGoogle Scholar
  18. 18.
    Q. Sun, Q. Wang, and P. Jena (2009). Appl. Phys. Lett. 94, 013111.CrossRefGoogle Scholar
  19. 19.
    Y. Li, G. Zhou, J. Li, B. L. Gu, and W. Duan (2008). J. Phys. Chem. C 112, 19268.CrossRefGoogle Scholar
  20. 20.
    M. M. Zhong, C. Huang, and G. Wang (2017). J. Alloys Compd. 725, 388.CrossRefGoogle Scholar
  21. 21.
    S. N. Khanna and P. Jena (1992). Phys. Rev. Lett. 69, 1664.CrossRefGoogle Scholar
  22. 22.
    S. N. Khanna and P. Jena (1995). Phys. Rev. B: Condens. Matter Mater. Phys. 51, 13705.CrossRefGoogle Scholar
  23. 23.
    G. L. Gutsev and A. I. Boldyrev (1981). Chem. Phys. 56, 277.CrossRefGoogle Scholar
  24. 24.
    G. L. Gutsev and A. I. Boldyrev (1982). Chem. Phys. Lett. 92, 262.CrossRefGoogle Scholar
  25. 25.
    H. Hotop and W. C. Lineberger (1985). J. Phys. Chem. Ref. Data 14, 731.CrossRefGoogle Scholar
  26. 26.
    J. A. Kerr CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2000).Google Scholar
  27. 27.
    X. B. Wang, C. F. Ding, L. S. Wang, A. I. Boldyrev, and J. Simons (1999). J. Chem. Phys. 110, 4763.CrossRefGoogle Scholar
  28. 28.
    B.M. Elliott, E. Koyle, A.I. Boldyrev, X.B. Wang, and L.S. Wang. J. Phys. Chem. A 109, 11560.Google Scholar
  29. 29.
    D. Wang, J. D. Graham, A. M. Buytendyk, and K. H. Bowen (2011). J. Chem. Phys. 135, 164308.CrossRefGoogle Scholar
  30. 30.
    I. Anusiewicz, M. Sobczyk, I. Dąbkowska, and P. Skurski (2003). Chem. Phys. 291, 171.CrossRefGoogle Scholar
  31. 31.
    I. Anusiewicz (2009). J. Phys. Chem. A 113, 11429.CrossRefGoogle Scholar
  32. 32.
    B. Pathak, D. Samanta, R. Ahuja, and P. Jena (2011). ChemPhysChem 12, 2423.CrossRefGoogle Scholar
  33. 33.
    G. L. Gutsev and A. I. Boldyrev (2007). Adv. Chem. Phys. 61, 169.Google Scholar
  34. 34.
    A. C. Reber, S. N. Khanna, and A. W. Castleman (2007). J. Am. Chem. Soc. 129, 10189.CrossRefGoogle Scholar
  35. 35.
    J. P. Perdew, K. Burke, and Y. Wang (1996). Phys. Rev. B: Condens. Matter Mater. Phys. 54, 16533.CrossRefGoogle Scholar
  36. 36.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  37. 37.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, Cheeseman, J. R., et al. Gaussian 09, Revision D.01 (Gaussian, Inc, Wallingford, 2009).Google Scholar
  38. 38.
    S. Grimme (2006). J. Comput. Chem. 27, 1787.CrossRefGoogle Scholar
  39. 39.
    A. Omidvar (2018). Inorg. Chem. 57, 9335.CrossRefGoogle Scholar
  40. 40.
    A. E. Reed, L. A. Curtiss, and F. A. Weinhold (1998). Chem. Rev. 88, 899.CrossRefGoogle Scholar
  41. 41.
    H. Kawamura, V. Kumar, Q. Sun, and Y. Kawazoe (2001). Phys. Rev. B: Condens. Matter Mater. Phys. 65, 045406.CrossRefGoogle Scholar
  42. 42.
    M. Yoon, S. Yang, C. Hicke, E. Wang, and Z. Zhang (2007). Nano Lett. 7, 2578.CrossRefGoogle Scholar
  43. 43.
    J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen (2010). Proc. Natl. Acad. Sci. USA 107, 2801.CrossRefGoogle Scholar
  44. 44.
    T. Lu (2016) A Multifunctional Wavefunction Analyzer, Version 3.4(dev).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, East Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations