Abstract
Using density functional theory method, we have studied O2 and CO molecules adsorption on the Pt13 and Pt12Cu clusters, respectively. Analysis of the adsorption energies, O–O bond length, and natural bond orbital (NBO) charge indicates that the copper doping plays an important role in the enhanced reduction of O2 molecule in low temperature fuel cells (LTFCs). On the other hand, contrary to the adsorption of O2 molecule, the calculated adsorption energies, NBO charge and molecular orbitals show that the copper doping significantly weakens the adsorption of the CO molecule, indicating that the Cu-doped Pt catalyst is resistant to CO poisoning in the LTFCs. Our studies provide an important clue to understand the catalytic mechanism of platinum copper alloy catalysts in the LTFCs.
Similar content being viewed by others
References
Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher (2011). Appl. Energy 88, 981.
X. Zhao, M. Yin, M. Liang, L. Liang, C. Liu, J. Liao, T. Lu, and X. Wei (2011). Energy Environ. Sci. 4, 2736.
C. Koenigsmann and S. S. Wong (2011). Energy Environ. Sci. 4, 1161.
Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, and G. Sun (2010). J. Phys. Chem. C 114, 19714.
M. Gong, G. Fu, Y. Chen, Y. Tang, and T. Lu (2014). Acs Appl. Mater. Inter. 6, 7301.
C. Li, M. Imura, and Y. Yamauchi (2014). Chem. Eur. J 20, 3277.
K. Eid, Y. H. Ahmad, S. Y. Alqaradawi, and N. K. Allam (2017). Catal. Sci. Technol. 7, 2819.
Z. Yu, J. Zhang, Z. Liu, J. M. Ziegelbauer, H. Xin, I. Dutta, D. A. Muller, and F. T. Wagner (2012). J. Phys. Chem. C 116, 19877.
R. Mu, Q. Fu, H. Xu, H. Zhang, Y. Huang, Z. Jiang, S. Zhang, D. Tan, and X. Bao (2011). J. Am. Chem. Soc. 133, 1978.
H. Yang, L. Dai, D. Xu, J. Fang, and S. Zou (2010). Electrochim. Acta 55, 8000.
H. Yang, J. Zhang, K. Sun, S. Zou, and J. Fang (2010). Angew. Chem. Int. Ed Engl. 49, 6848.
D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y. H. Chung, and H. Kim (2015). J. Am. Chem. Soc. 137, 15478.
H. Zhang, M. Jin, and Y. Xia (2012). Cheminform 41, 8035.
A. X. Yin, X. Q. Min, W. Zhu, W. C. Liu, Y. W. Zhang, and C. H. Yan (2012). Chem. - Eur. J 18, 777.
A. B. Callahan (2008). Phys. Chem. Chem. Phys. 10, 6052.
Z. Xu, H. Zhang, S. Liu, B. Zhang, H. Zhong, and D. S. Su (2012). Int. J. Hydrog. Energy. 37, 17978.
X. Ge, L. Chen, J. Kang, T. Fujita, A. Hirata, W. Zhang, J. Jiang, and M. Chen (2013). Adv. Funct. Mater. 23, 4156.
D. Xu, Z. Liu, H. Yang, Q. Liu, J. Zhang, J. Fang, S. Zou, and K. Sun (2009). Angew. Chem., Int. Ed. 48, 4217.
D. Xu, S. Bliznakov, Z. Liu, J. Fang, and N. Dimitrov (2010). Angew. Chem. 49, 1282.
B. Y. Xia, H. B. Wu, X. Wang, and X. W. Lou (2012). J. Am. Chem. Soc. 134, 13934.
X. Yu, D. Wang, Q. Peng, and Y. Li (2011). Chem. Commun. 47, 8094.
A. S. Chaves, M. J. Piotrowski, D. G. Sobrinho, and S. J. Da (2015). J. Phys. Chem. A 119, 11565.
D. G. Sobrinho, R. K. Nomiyama, A. S. Chaves, M. J. Piotrowski, and J. L. F. D. Silva (2015). J. Phys. Chem. C 119, 15669.
J. Mejía-López, G. García, and A. H. Romero (2009). J. Chem. Phys. 131, 31.
A. S. Chaves, G. G. Rondina, M. J. Piotrowski, and J. L. F. D. Silva (2015). Comput. Mater. Sci. 98, 278.
H. Mu, B. Xu, C. Ouyang, and X. Lei (2016). J. Alloy. Compd. 696, 470.
X. L. Lei, M. Wu, G. Liu, B. Xu, and C. Ouyang (2013). J. Phys. Chem. A 117, 8293.
X. Lei, H. Mu, S. Li, G. Liu, B. Xu, and C. Ouyang (2018). J. Alloy. Compd. 741, 604.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2013). Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT.
A. D. Becke (1993). J. Chem. Phys. 98, 5648.
C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.
P. J. Hay (1985). J. Chem. Phys. 82, 299.
P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.
V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus (1998). J. Chem. Phys. 109, 1223.
P. C. Hariharan and J. A. Pople (1973). Theor. Chim. Acta 28, 213.
M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, and J. A. Pople (1982). J. Chem. Phys. 77, 3654.
J. Zhang and M. Dolg (2016). Phys. Chem. Chem. Phys. 18, 3003.
J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173.
F. Zhao, C. Liu, P. Wang, S. Huang, and H. Tian (2013). J. Alloy. Compd. 577, 669.
G. Shafai, S. Hong, T. Rahman, and M. Bertino (2008), APS March Meeting.
K. Fukui (1952). J. Chem. Phys. 20, 1653.
K. Fukui, T. Yonezawa, C. Nagata, and H. Shingu (1954). J. Chem. Phys. 22, 1433.
Acknowledgements
The authors thank the National Natural Science Foundation of China (Grant Nos. 11404149, 11764019) for financial support of the current work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, G., Lei, X. The Role of Cu in Adsorption of O2 and CO Molecules on the Pt12Cu Cluster. J Clust Sci 30, 1641–1647 (2019). https://doi.org/10.1007/s10876-019-01609-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-019-01609-5