Skip to main content
Log in

The Role of Cu in Adsorption of O2 and CO Molecules on the Pt12Cu Cluster

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Using density functional theory method, we have studied O2 and CO molecules adsorption on the Pt13 and Pt12Cu clusters, respectively. Analysis of the adsorption energies, O–O bond length, and natural bond orbital (NBO) charge indicates that the copper doping plays an important role in the enhanced reduction of O2 molecule in low temperature fuel cells (LTFCs). On the other hand, contrary to the adsorption of O2 molecule, the calculated adsorption energies, NBO charge and molecular orbitals show that the copper doping significantly weakens the adsorption of the CO molecule, indicating that the Cu-doped Pt catalyst is resistant to CO poisoning in the LTFCs. Our studies provide an important clue to understand the catalytic mechanism of platinum copper alloy catalysts in the LTFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher (2011). Appl. Energy 88, 981.

    Article  CAS  Google Scholar 

  2. X. Zhao, M. Yin, M. Liang, L. Liang, C. Liu, J. Liao, T. Lu, and X. Wei (2011). Energy Environ. Sci. 4, 2736.

    Article  CAS  Google Scholar 

  3. C. Koenigsmann and S. S. Wong (2011). Energy Environ. Sci. 4, 1161.

    Article  CAS  Google Scholar 

  4. Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, and G. Sun (2010). J. Phys. Chem. C 114, 19714.

    Article  CAS  Google Scholar 

  5. M. Gong, G. Fu, Y. Chen, Y. Tang, and T. Lu (2014). Acs Appl. Mater. Inter. 6, 7301.

    Article  CAS  Google Scholar 

  6. C. Li, M. Imura, and Y. Yamauchi (2014). Chem. Eur. J 20, 3277.

    Article  CAS  Google Scholar 

  7. K. Eid, Y. H. Ahmad, S. Y. Alqaradawi, and N. K. Allam (2017). Catal. Sci. Technol. 7, 2819.

    Article  CAS  Google Scholar 

  8. Z. Yu, J. Zhang, Z. Liu, J. M. Ziegelbauer, H. Xin, I. Dutta, D. A. Muller, and F. T. Wagner (2012). J. Phys. Chem. C 116, 19877.

    Article  CAS  Google Scholar 

  9. R. Mu, Q. Fu, H. Xu, H. Zhang, Y. Huang, Z. Jiang, S. Zhang, D. Tan, and X. Bao (2011). J. Am. Chem. Soc. 133, 1978.

    Article  CAS  Google Scholar 

  10. H. Yang, L. Dai, D. Xu, J. Fang, and S. Zou (2010). Electrochim. Acta 55, 8000.

    Article  CAS  Google Scholar 

  11. H. Yang, J. Zhang, K. Sun, S. Zou, and J. Fang (2010). Angew. Chem. Int. Ed Engl. 49, 6848.

    Article  CAS  Google Scholar 

  12. D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y. H. Chung, and H. Kim (2015). J. Am. Chem. Soc. 137, 15478.

    Article  CAS  Google Scholar 

  13. H. Zhang, M. Jin, and Y. Xia (2012). Cheminform 41, 8035.

    CAS  Google Scholar 

  14. A. X. Yin, X. Q. Min, W. Zhu, W. C. Liu, Y. W. Zhang, and C. H. Yan (2012). Chem. - Eur. J 18, 777.

    Article  CAS  Google Scholar 

  15. A. B. Callahan (2008). Phys. Chem. Chem. Phys. 10, 6052.

    Article  Google Scholar 

  16. Z. Xu, H. Zhang, S. Liu, B. Zhang, H. Zhong, and D. S. Su (2012). Int. J. Hydrog. Energy. 37, 17978.

    Article  CAS  Google Scholar 

  17. X. Ge, L. Chen, J. Kang, T. Fujita, A. Hirata, W. Zhang, J. Jiang, and M. Chen (2013). Adv. Funct. Mater. 23, 4156.

    Article  CAS  Google Scholar 

  18. D. Xu, Z. Liu, H. Yang, Q. Liu, J. Zhang, J. Fang, S. Zou, and K. Sun (2009). Angew. Chem., Int. Ed. 48, 4217.

  19. D. Xu, S. Bliznakov, Z. Liu, J. Fang, and N. Dimitrov (2010). Angew. Chem. 49, 1282.

    Article  CAS  Google Scholar 

  20. B. Y. Xia, H. B. Wu, X. Wang, and X. W. Lou (2012). J. Am. Chem. Soc. 134, 13934.

    Article  CAS  Google Scholar 

  21. X. Yu, D. Wang, Q. Peng, and Y. Li (2011). Chem. Commun. 47, 8094.

    Article  CAS  Google Scholar 

  22. A. S. Chaves, M. J. Piotrowski, D. G. Sobrinho, and S. J. Da (2015). J. Phys. Chem. A 119, 11565.

    Article  CAS  Google Scholar 

  23. D. G. Sobrinho, R. K. Nomiyama, A. S. Chaves, M. J. Piotrowski, and J. L. F. D. Silva (2015). J. Phys. Chem. C 119, 15669.

    Article  Google Scholar 

  24. J. Mejía-López, G. García, and A. H. Romero (2009). J. Chem. Phys. 131, 31.

    Article  Google Scholar 

  25. A. S. Chaves, G. G. Rondina, M. J. Piotrowski, and J. L. F. D. Silva (2015). Comput. Mater. Sci. 98, 278.

    Article  CAS  Google Scholar 

  26. H. Mu, B. Xu, C. Ouyang, and X. Lei (2016). J. Alloy. Compd. 696, 470.

    Article  Google Scholar 

  27. X. L. Lei, M. Wu, G. Liu, B. Xu, and C. Ouyang (2013). J. Phys. Chem. A 117, 8293.

    Article  CAS  Google Scholar 

  28. X. Lei, H. Mu, S. Li, G. Liu, B. Xu, and C. Ouyang (2018). J. Alloy. Compd. 741, 604.

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2013). Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT.

  30. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  31. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  32. P. J. Hay (1985). J. Chem. Phys. 82, 299.

    Article  CAS  Google Scholar 

  33. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.

    Article  CAS  Google Scholar 

  34. V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus (1998). J. Chem. Phys. 109, 1223.

    Article  CAS  Google Scholar 

  35. P. C. Hariharan and J. A. Pople (1973). Theor. Chim. Acta 28, 213.

    Article  CAS  Google Scholar 

  36. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, and J. A. Pople (1982). J. Chem. Phys. 77, 3654.

    Article  CAS  Google Scholar 

  37. J. Zhang and M. Dolg (2016). Phys. Chem. Chem. Phys. 18, 3003.

    Article  CAS  Google Scholar 

  38. J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173.

    Article  CAS  Google Scholar 

  39. F. Zhao, C. Liu, P. Wang, S. Huang, and H. Tian (2013). J. Alloy. Compd. 577, 669.

    Article  CAS  Google Scholar 

  40. G. Shafai, S. Hong, T. Rahman, and M. Bertino (2008), APS March Meeting.

  41. K. Fukui (1952). J. Chem. Phys. 20, 1653.

    Article  Google Scholar 

  42. K. Fukui, T. Yonezawa, C. Nagata, and H. Shingu (1954). J. Chem. Phys. 22, 1433.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant Nos. 11404149, 11764019) for financial support of the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueling Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Lei, X. The Role of Cu in Adsorption of O2 and CO Molecules on the Pt12Cu Cluster. J Clust Sci 30, 1641–1647 (2019). https://doi.org/10.1007/s10876-019-01609-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01609-5

Keywords

Navigation