Skip to main content

Plant-Mediated Synthesis, Characterization and Bactericidal Potential of Emerging Silver Nanoparticles Using Stem Extract of Phyllanthus pinnatus: A Recent Advance in Phytonanotechnology

A Correction to this article was published on 31 March 2020

This article has been updated

Abstract

The eco-friendly and cost-effective strategies for the preparation of nanoparticles are the cutting edge researches in the field of nanotechnology. The objective of the study was the eco-friendly synthesis, characterization and their antibacterial activity of AgNPs using stem extract of Phyllanthus pinnatus. The appearance of the dark brown color showed the biofabrication of AgNPs and its characterised by UV–Vis, SEM, XRD, and FT-IR analysis. Consequently, the antibacterial activity of AgNPs was tested against different bacterial pathogens. The UV–Vis spectrum of colloidal AgNPs exhibited a strong absorption peak at 490 nm. Besides, the SEM image showed that the AgNPs were fairly uniform in the nanoscale with mostly cubical morphology. The XRD analysis showed the crystalline nature of AgNPs. In addition, the FT-IR spectrum revealed the presence of functional groups attached to the surface of AgNPs that may have a role in bioreduction and stabilization of AgNPs. The AgNPs showed dose-dependent toxicity against bacterial pathogens. The maximum zone of inhibition was found at 1.8 mm in diameter for both Vibrio cholera and Shigella flexneri at 40 µL concentration. Although the current study showed potent in vitro antibacterial activity of AgNPs, further studies are required to establish the bactericidal potential of AgNPs on animal models for drug development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

  • 31 March 2020

    In the original publication of this article, co-author name was missed to include in the author group.

References

  1. 1.

    A. Albanese, P. S. Tang, and W. C. W. Chan (2012). Annu. Rev. Biomed. Eng.14, 1.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    M. Fakruddin, Z. Hossain, and H. Afroz (2012). J. Nanobiotechnol.10, 31.

    Article  Google Scholar 

  3. 3.

    N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran. J. Pharm. Res.16, 1167.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). J. Clust. Sci.30, 259.

    CAS  Article  Google Scholar 

  5. 5.

    P. Boomi, G. P. Poorani, S. Palanisamy, S. Selvam, G. Ramanathan, S. Ravikumar, H. Barabadi, H. G. Prabu, J. Jeyakanthan, and M. Saravanan (2019). J. Clust. Sci. https://doi.org/10.1007/s10876-019-0153.

    Article  Google Scholar 

  6. 6.

    H. Barabadi (2017). Cell. Mol. Biol.63, 3.

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    S. Salari, S. Esmaeilzadeh Bahabadi, A. Samzadeh-Kermani, and F. Yousefzaei (2019). Iran. J. Pharm. Res.18, 430.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    L. Aghebati-maleki, B. Salehi, R. Behfar, H. Saeidmanesh, F. Ahmadian, M. Sarebanhassanabadi, and M. Negahdary (2014). Int. J. Electrochem. Sci.9, 257.

    Google Scholar 

  9. 9.

    T. Ramezani, M. Nabiuni, J. Baharara, K. Parivar, and F. Namvar (2019). Iran. J. Pharm. Res.18, 222.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    H. Barabadi, M. Ovais, Z. K. Shinwari, and M. Saravanan (2017). Green Chem. Lett. Rev.10, 285.

    CAS  Article  Google Scholar 

  11. 11.

    M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari (2016). Nanomedicine.11, 3157.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    M. Maham and R. Karami-Osboo (2017). Iran. J. Pharm. Res.16, 462.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    M. Kasithevar, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi, and Z. K. Shinwari (2017). J. Interdiscip. Nanomed.2, 131.

    CAS  Article  Google Scholar 

  14. 14.

    S. A. Dahoumane, M. Mechouet, K. Wijesekera, C. D. M. Filipe, C. Sicard, D. A. Bazylinski, and C. Jeffryes (2017). Green Chem.19, 552.

    CAS  Article  Google Scholar 

  15. 15.

    A. Arya, K. Gupta, T. S. Chundawat, and D. Vaya (2018). Bioinorg. Chem. Appl.2018, 7879403.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Z. Rezvani Amin, Z. Khashyarmanesh, B. S. Fazly Bazzaz, and Z. Sabeti Noghabi (2019). Iran. J. Pharm. Res.18, 210.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    M. Saravanan, S. K. Barik, D. MubarakAli, P. Prakash, and A. Pugazhendhi (2018). Microb. Pathog.116, 221.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    M. Manimaran and K. Kannabiran (2017). Lett. Appl. Microbiol.64, 401.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    F. Niknejad, M. Nabili, R. Daie Ghazvini, and M. Moazeni (2015). Curr. Med. Mycol.1, 17.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    H. Barabadi and S. Honary (2016). Pharm. Biomed. Res.2, 1.

    Google Scholar 

  21. 21.

    H. Barabadi and S. Honary (2014). Razi J. Med. Sci.21, 20.

    Google Scholar 

  22. 22.

    H. Barabadi, A. Alizadeh, M. Ovais, A. Ahmadi, Z. K. Shinwari, and M. Saravanan (2018). IET Nanobiotechnol.12, 377.

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Q. Abbas, M. Saleem, A. R. Phull, M. Rafiq, M. Hassan, K.-H. Lee, and S.-Y. Seo (2017). Iran. J. Pharm. Res.16, 760.

    CAS  Google Scholar 

  24. 24.

    H. Barabadi, S. Honary, P. Ebrahimi, A. Alizadeh, F. Naghibi, and M. Saravanan (2019). Inorg. Nano Metals Chem. https://doi.org/10.1080/24701556.2019.1583251.

    Article  Google Scholar 

  25. 25.

    R. Subbaiya, M. Saravanan, A. R. Priya, K. R. Shankar, M. Selvam, M. Ovais, R. Balajee, and H. Barabadi (2017). IET Nanobiotechnol.11, 965.

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    S. Honary, H. Barabadi, E. Gharaei-Fathabad, and F. Naghibi (2013). Trop. J. Pharm. Res.12, 7.

    CAS  Google Scholar 

  27. 27.

    H. Barabadi, S. Honary, M. Ali Mohammadi, E. Ahmadpour, M. T. Rahimi, A. Alizadeh, F. Naghibi, and M. Saravanan (2017). Environ. Sci. Pollut. Res. Int.24, 5800.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    S. Honary, E. Gharaei-Fathabad, H. Barabadi, and F. Naghibi (2013). J. Nanosci. Nanotechnol.13, 1427.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    H. Barabadi, S. Honary, P. Ebrahimi, M. A. Mohammadi, A. Alizadeh, and F. Naghibi (2014). Braz. J. Microbiol.45, 1493.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    S. Honary, H. Barabadi, E. Gharaei-Fathabad, and F. Naghibi (2012). Dig. J. Nanomater. Bios.7, 999.

    Google Scholar 

  31. 31.

    R. Dobrucka (2017). Iran. J. Pharm. Res.16, 753.

    CAS  Google Scholar 

  32. 32.

    S. Honary, H. Barabadi, P. Ebrahimi, F. Naghibi, and A. Alizadeh (2015). J. Nano Res.30, 106.

    CAS  Article  Google Scholar 

  33. 33.

    M. Saravanan, V. Gopinath, M. K. Chaurasia, A. Syed, F. Ameen, and N. Purushothaman (2018). Microb. Pathog.115, 57.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    H. Barabadi, F. Kobarfard, and H. Vahidi (2018). Iran. J. Pharm. Res.17, 87.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    M. Saravanan, T. Asmalash, A. Gebrekidan, D. Gebreegziabiher, T. Araya, H. Hilekiros, H. Barabadi, and K. Ramanathan (2018). Pharm Nanotechnol.6, 17.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    J. A. John Paul, B. Karunai Selvi, and N. Karmegam (2015). Appl. Nanosci.5, 937.

    Article  CAS  Google Scholar 

  37. 37.

    K. Kanagamani, P. Muthukrishnan, K. Shankar, A. Kathiresan, H. Barabadi, and M. Saravanan (2019). J. Clust. Sci. https://doi.org/10.1007/s10876-019-01583-y.

    Article  Google Scholar 

  38. 38.

    P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, and M. Saravanan (2013). Colloids Surf. B Biointerfaces108, 255.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Y. Kuthati, R. K. Kankala, S. X. Lin, C. F. Weng, and C. H. Lee (2015). Mol. Pharm.12, 2289.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    M. Ovais, A. T. Khalil, N. U. Islam, I. Ahmad, M. Ayaz, M. Saravanan, Z. K. Shinwari, and S. Mukherjee (2018). Appl. Microbiol. Biotechnol.102, 6799.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    B. Sarin, N. Verma, J. P. Martín, and A. Mohanty (2014). Sci. World J.2014, 839172.

    Article  Google Scholar 

  42. 42.

    K. Singh, M. Panghal, S. Kadyan, U. Chaudhary, and J. P. Yadav (2014). J. Nanobiotechnol.12, 40.

    Article  CAS  Google Scholar 

  43. 43.

    P. Kathireswari, S. Gomathi, and K. Saminathan (2014). Int. J. Curr. Microbiol. Appl. Sci.3, 960.

    CAS  Google Scholar 

  44. 44.

    M. M. Or Rashid, M. S. Islam, M. A. Haque, M. A. Rahman, M. T. Hossain, and M. A. Hamid (2016). Iran. J. Pharm. Res.15, 591.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    M. Ovais, A. T. Khalil, A. Raza, N. U. Islam, M. Ayaz, M. Saravanan, M. Ali, I. Ahmad, M. Shahid, and Z. K. Shinwari (2018). Appl. Microbiol. Biotechnol.102, 4393.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    M. Ovais, A. Raza, S. Naz, N. U. Islam, A. T. Khalil, S. Ali, M. A. Khan, and Z. K. Shinwari (2017). Appl. Microbiol. Biotechnol.101, 3551.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    R. Emmanuel, M. Saravanan, M. Ovais, S. Padmavathy, Z. K. Shinwari, and P. Prakash (2017). Microb. Pathog.113, 295.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    M. Anandan, G. Poorani, P. Boomi, K. Varunkumar, K. Anand, A. A. Chuturgoon, M. Saravanan, and H. Gurumallesh Prabu (2019). Process Biochem. https://doi.org/10.1016/j.procbio.2019.02.014.

    Article  Google Scholar 

  49. 49.

    M. Saravanan, S. Arokiyaraj, T. Lakshmi, and A. Pugazhendhi (2018). Microb. Pathog.117, 68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    X. Yan, B. He, L. Liu, G. Qu, J. Shi, L. Hu, and G. Jiang (2018). Metallomics10, 557.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the Sathyabama Institute of Science and Technology, Mekelle University, UGC [No.F.14-13/2013, Inno/ASIST], DST-FIST [SR/FST/LSI-667/2016(C)] and MHRD-RUSA 2.0 [F.24/51/2014-U, Policy (TNMulti-Gen), Dept. of Edn. Govt. of India] for the financial supports and infrastructure facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muthupandian Saravanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balachandar, R., Gurumoorthy, P., Karmegam, N. et al. Plant-Mediated Synthesis, Characterization and Bactericidal Potential of Emerging Silver Nanoparticles Using Stem Extract of Phyllanthus pinnatus: A Recent Advance in Phytonanotechnology. J Clust Sci 30, 1481–1488 (2019). https://doi.org/10.1007/s10876-019-01591-y

Download citation

Keywords

  • Phytosynthesis
  • Silver nanoparticles
  • Phyllanthus pinnatus
  • Antibacterial activity