Skip to main content
Log in

Green Synthesis of Silver Nanoparticles and Their Effective Utilization in Fabricating Functional Surface for Antibacterial Activity Against Multi-Drug Resistant Proteus mirabilis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A simple and rapid synthesis of silver nanoparticles was achieved using the aqueous extract of Ficus benghalensis leaf as both reducing and stabilizing agents. Reaction kinetics of the bioreduction process was investigated to understand the effects of various parameters such as silver ion concentrations, volume of leaf extract, pH of the reaction mixture and reaction duration. The biosynthesized silver nanoparticles were characterized by employing various techniques such as Ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering, scanning electron microscopy and transmission electron microscopy. The obtained silver nanoparticles showed face- centered cubic phase and found to have the spherical shape with an average size of 28.69 nm as respectively observed from XRD and TEM analysis. The biogenic silver nanoparticles showed excellent antimicrobial activity against the multi-drug resistant pathogens such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis and Staphylococcus aureus, which is comparable with the standard broad spectrum antibiotic streptomycin. Further, the biosynthesized silver nanoparticles were explored for the functionalization of glass slide without using any binding agents, which showed the strong resistance against the growth of biofilm forming Proteus mirabilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. High levels of antibiotic resistance found worldwide, new data shows (2018). Media Centre, World Health Organization. https://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/en/. (Accessed on 16th April 2019).

  2. P. V. Baptista, M. P. Mccusker, A. Carvalho, and D. A. Ferreira (2018). Front. Microbiol. 9, 1.

    Article  Google Scholar 

  3. N. Beyth, Y. Houri-haddad, A. Domb, W. Khan, and R. Hazan (2015). Evidence-based Complement. Altern. Med. 246012, 16.

    Google Scholar 

  4. A. Baranwal, A. Srivastava, P. Kumar, and V. K. Bajpai (2018). Front. Microbiol. 9, 422.

    Article  Google Scholar 

  5. R. Vajtai Springer Handbook of Nanomaterials (Springer, Berlin, 2013).

    Book  Google Scholar 

  6. K. K. Y. Wong and X. Liu (2010). MedChemComm 1, 125.

    Article  CAS  Google Scholar 

  7. B. Le Ouay and F. Stellacci (2015). Nano Today 10, 339–354.

    Article  Google Scholar 

  8. J. R. Morones, et al. (2005). Nanotechnology 16, 2346–2353.

    Article  CAS  Google Scholar 

  9. X. Zhang, Z. Liu, W. Shen, and S. Gurunathan (2016). Int. J. Mol. Sci. 17, 1534.

    Article  Google Scholar 

  10. P. Vishnukumar, S. Vivekanandhan, and S. Muthuramkumar (2017). ChemBioEng Rev. 4, 18.

    Article  CAS  Google Scholar 

  11. V. Deepak and K. Kalishwaralal Metal Nanoparticles in Microbiology. (Springer, Berlin, 2011).

    Google Scholar 

  12. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.

    Article  CAS  Google Scholar 

  13. P. Kuppusamy, M. M. Yusoff, and G. P. Maniam (2016). Saudi Pharm. J. 24, 473.

    Article  Google Scholar 

  14. Z. R. Mashwani, M. A. Khan, T. Khan, and A. Nadhman (2016). Adv. Colloid Interface Sci. 234, 132–141.

    Article  CAS  Google Scholar 

  15. S. Vivekanandhan, M. Venkateswarlu, H. R. Rawls, M. Misra, and A. K. Mohanty (2015). Ceram. Int. 41, 3305–3311.

    Article  CAS  Google Scholar 

  16. N. Seyedi, K. Saidi, and H. Sheibani (2017). Catal. Lett. 148, 277–288.

    Article  Google Scholar 

  17. A. N. Dizaji, M. Yilmaz, and E. Piskin (2015). Artif. Cells Nanomed. Biotechnol. 44, 1.

    Google Scholar 

  18. G. Malegowd, et al. (2013). Carbohydr. Polym. 93, 553–560.

    Article  Google Scholar 

  19. S. Vivekanandhan, M. Schreiber, C. Mason, A. K. Mohanty, and M. Misra (2014). Colloids Surfaces B Biointerfaces 113, 169–175.

    Article  CAS  Google Scholar 

  20. Z. Zhao, M. Wang, and T. Liu (2015). Mater. Lett. 158, 274–277.

    Article  CAS  Google Scholar 

  21. R. Karthik, M. Govindasamy, S. Chen, and V. Mani (2016). J. Colloid Interface Sci. 475, 46–56.

    Article  CAS  Google Scholar 

  22. M. Hariram and S. Vivekanandhan (2018). ChemistrySelect 3, 13561.

    Article  CAS  Google Scholar 

  23. G. E. Trease and W. C. Evans Pharmacognosy (Saunderser Publishers, London, 2002).

    Google Scholar 

  24. J. B. Harborne Phytochemical methods—A Guide to Modern Techniques of Plant Analysis (Springer, Berlin, 2005).

    Google Scholar 

  25. S. Agnihotri, S. Mukherji, and S. Mukherji (2013). Nanoscale 5, 7328–7340.

    Article  CAS  Google Scholar 

  26. P. Banerjee, M. Satapathy, A. Mukhopahayay, and P. Das (2014). Bioresour. Bioprocess. 1, 3.

    Article  Google Scholar 

  27. P. Mulvaney (1996). Langmuir 12, 788.

    Article  CAS  Google Scholar 

  28. G. M. Sangaonkar and K. D. Pawar (2018). Colloids Surfaces B Biointerfaces 164, 210.

    Article  CAS  Google Scholar 

  29. A. Gole, et al. (2001). Langmuir 17, 1674.

    Article  CAS  Google Scholar 

  30. S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik (2012). Chem. Phys. Lett. 521, 91.

    Article  CAS  Google Scholar 

  31. A. Abbaszadegan, et al. (2015). J. Nanomater. 16, 53.

    Google Scholar 

  32. S. Z. H. Naqvi, et al. (2013). Int. J. Nanomedicine 8, 3187.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge: a) University Grants Commission, Govt. of India, New Delhi for financial assistance under Major Research projects (F. No. 39-409/2010 (SR) & Lr.No.F.42-485/2013 (SR)), b) STIC Kochi for analysis SEM - EDAX and HRTEM - SAED images, c) Gandhigram Rural Institute - Deemed University, Dindigul for analysis SEM – EDAX, d) Alagappa University, Karaikudi for XRD analysis. We also acknowledge the Department of Science and Technology for their support through FIST program to the college.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthuramkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maniraj, A., Kannan, M., Rajarathinam, K. et al. Green Synthesis of Silver Nanoparticles and Their Effective Utilization in Fabricating Functional Surface for Antibacterial Activity Against Multi-Drug Resistant Proteus mirabilis. J Clust Sci 30, 1403–1414 (2019). https://doi.org/10.1007/s10876-019-01582-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01582-z

Keywords

Navigation