Advertisement

Evaluation of Nanotoxicity of Araucaria heterophylla Gum Derived Green Synthesized Silver Nanoparticles on Eudrilus eugeniae and Danio rerio

  • Antony V. SamrotEmail author
  • C. SaiPriya
  • J. Lavanya Agnes Angalene
  • S. M. Roshini
  • P. J. Jane Cypriyana
  • S. Saigeetha
  • P. Raji
  • S. Suresh KumarEmail author
Original Paper
  • 19 Downloads

Abstract

Metal nanoparticles found its application in most fields because of its different physiochemical properties. Although there are several methods for synthesis of nanoparticles, where green and biological synthesis of nanoparticles reduces the toxicity. These metal nanoparticles are not properly disposed to the environment. Thus, this study was focussed to evaluate the effects of Araucaria heterophylla mediated green synthesised silver nanoparticles on various in vivo models such as earth worm—Eudrilus eugeniae and zebra fish—Danio rerio. Even the biologically synthesised nanoparticles were showing negative impacts on these models. Silver nanoparticles was found to cause epithelial erosion and lipofucshin deposits on Eudrilus eugeniae, where it was causing erosion and structure deformation in guts of Danio rerio.

Keywords

Green synthesized silver nanoparticles Nanotoxicity Eudrilus eugeniae Danio rerio 

Notes

Compliance with Ethical Standards

Conflict of interest

All the authors of the paper are not having any conflict of interest.

References

  1. 1.
    J. Yang, W. Cao, and Y. Rui (2017). J. Plant Interact. 12, 158.CrossRefGoogle Scholar
  2. 2.
    X. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan (2016). Int. J. Mol. Sci. 17, 1534.CrossRefGoogle Scholar
  3. 3.
    S. Ahmed, Saifullah, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Radiat. Res. Appl. Sci. 9, 1.CrossRefGoogle Scholar
  4. 4.
    A. V. Samrot, P. Raji, A. J. Selvarani, and P. Nishanthini (2018). Biocatal. Agric. Biotechnol. 16, 253.CrossRefGoogle Scholar
  5. 5.
    P. Senthilkumar, S. Rashmitha, P. Veera, C. V. Ignatious, C. SaiPriya, and A. V. Samrot (2018). J. Pure Appl. Microbiol. 12, (02), 969.CrossRefGoogle Scholar
  6. 6.
    A. V. Samrot, N. Shobana, and R. Jenna (2018). Bionanoscience 8, 632.  https://doi.org/10.1007/s12668-018-0521-8.CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, G. Xing, and Z. Chai (2008). Nat. Nanotechnol. 3, (4), 191.CrossRefGoogle Scholar
  8. 8.
    S. Arora, J. M. Rajwade, and K. M. Paknikar (2012). Toxicol. Appl. Pharmacol. 258, (2), 151.CrossRefGoogle Scholar
  9. 9.
    O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru (2013). Arch. Toxicol. 87, (7), 1181.CrossRefGoogle Scholar
  10. 10.
    F. Marino, A. Salvaggio, F. Capparucci, G. Di Caro, C. Iaria, A. Salvo, A. Rotondo, D. Tibullo, G. Guerriero, E. M. Scalisi, M. Zimbone, G. Impellizzeri, and M. V. Brundo (2017). Front. Physiol. 8, (2017), 1011.Google Scholar
  11. 11.
    P. Schulte, C. Geraci, R. Zumwalde, M. Hoover, V. Castranova, E. Kuempel, V. Murashov, H. Vainio, and K. Savolainen (2008). Scand. J. Work Environ. Health 34, 471.CrossRefGoogle Scholar
  12. 12.
    A. V. Samrot, U. Burman, S. Padmanaban, P. Yamini, and A. M. Rabel (2018). Toxicol. Environ. Health Sci. 10, (3), 162.CrossRefGoogle Scholar
  13. 13.
    A. V. Samrot, K. S. Bhavya, C. S. Sahithya, and N. Sowmya (2018). J. Cluster Sci..  https://doi.org/10.1007/s10876-018-1440-0.Google Scholar
  14. 14.
    A. V. Samrot, C. Justin, S. Padmanaban, and U. Burman (2017). Appl. Nanosci. 7, (1), 17.  https://doi.org/10.1007/s13204-016-0542-y.CrossRefGoogle Scholar
  15. 15.
    K. R. Butt, and C. N. Lowe, in Controlled Cultivation of Endogeic and Anecic Earthworms, ed. A. Karaca, Vol. 24 (Springer, Berlin, Heidelberg), pp. 107–121.Google Scholar
  16. 16.
    E. Haque and A. C. Ward (2018). Nanomaterials 8, (7), 561.CrossRefGoogle Scholar
  17. 17.
    A. V. Samrot, M. P. Vignesh, and V. Vignesh (2015). Int. J. Pharma Biol. Sci. 6, (1), 326.Google Scholar
  18. 18.
    A. V. Samrot, V. Vignesh, and M. P. Vignesh (2015). Int. J. Pharma Biol. Sci. 6, (3), 230.Google Scholar
  19. 19.
    M. Button, M. J. Watts, M. R. Cave, C. F. Harrington, and G. T. Jenkin (2009). Environ. Geochem. Health 31, 273.CrossRefGoogle Scholar
  20. 20.
    M. Venkatesham, D. Ayodhya, A. Madhusudhan, and G. Veerabhadram (2012). Int. J. Green Nanotechnol. 4, (3), 199.CrossRefGoogle Scholar
  21. 21.
    I. Paatero, E. Casals, R. Niemi, E. Ozliseli, J. M. Rosenholm, and C. Sahlgren (2017). Sci. Rep. 7, 8423.CrossRefGoogle Scholar
  22. 22.
    S. Barua, R. Konwarh, S. S. Bhattacharya, P. Das, K. S. P. Devi, T. K. Maiti, M. Mandal, and N. Karak (2013). Colloids Surf. B: Biointerfaces 105, 37.CrossRefGoogle Scholar
  23. 23.
    J. L. Speshock, N. Elrod, D. K. Sadoski, E. Maurer, L. K. Braydich-Stolle, J. Brady, and S. Hussain (2016). Front. Nanosci. Nanotech. 2, (3), 114.  https://doi.org/10.15761/FNN.1000119.CrossRefGoogle Scholar
  24. 24.
    A. W. Shoults-Wilson, B. C. Reinsch, O. V. Tsyusko, P. M. Bertsch, G. V. Lowry, and J. M. Unrine (2011). Soil Sci. Soc. Am. J..  https://doi.org/10.2136/sssaj2010.0127nps.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Faculty of Medicine and Biomedical SciencesMAHSA UniversityJenjaromMalaysia
  2. 2.Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiIndia
  3. 3.Department of ParasitologyUniversiti Putra MalaysiaSeri KembanganMalaysia
  4. 4.Institute of BioscienceUniversiti Putra MalaysiaSeri KembanganMalaysia

Personalised recommendations