Skip to main content
Log in

Incorporation of Keggin-Type Phosphomolybdic Acid, Ionic Liquid and Carbon Nanotube Leading to Formation of Multifunctional Ternary Composite Materials: Fabrication, Characterization and Electrochemical Reduction/Detection of Iodate, Borate and Nitrite

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Single wall carbon nanotube substituted ionic liquids were synthesized successfully by esterification reaction of the carboxylated single wall carbon nanotubes (SWNTs) with hydroxyl ammonium ionic liquids (ILs) of the formula CH3N(CH2CH2OH)2(CnH2n+1)Br (n = 4, 8, 12), which subsequently reacted with molybdophosphoric acid (PMo12) to form three new ternary composite materials (SWNTs-ILCn-PMo12) (n = 4, 8, 12). The composites modified glass carbon electrodes were used to study electrochemical properties systematically through cyclic voltammetry method. The results showed that electronic conductivity of SWNTs moiety and ionic conductivity of ILs moiety in the composite materials played important roles in the electrochemistry and electrocatalysis. The length of alkyl carbon chain of the ionic liquids in the composite materials was also found to influence the electrochemical properties. The experimental results also showed that all the composites modified electrode can catalytically reduce and detect IO3, BrO3 and NO2 with very high efficiency (low detection limit, short response time and wide linear range).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Galiński, A. Lewandowski, and I. Stępniak (2006). Electrochim. Acta 51, 5567.

    Article  CAS  Google Scholar 

  2. R. D. Rogers and K. R. Seddon (2003). Science 302, 792.

    Article  PubMed  Google Scholar 

  3. A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, and V. Tambyrajah (2001). Chem. Commun. 19, 2010.

    Article  CAS  Google Scholar 

  4. P. Wasserscheid and W. Keim (2000). Angew. Chem. Int. Ed. 39, 3772.

    Article  CAS  Google Scholar 

  5. S. V. Dzyuba and R. A. Bartsch (2001). Chem. Commun. 16, 1466.

    Article  CAS  Google Scholar 

  6. T. Hirashige, R. Hagiwara, and Y. Ito (2000). J. Fluorine Chem. 106, 205.

    Article  CAS  Google Scholar 

  7. J. C. Xiao and J. N. M. Shreeve (2005). J. Org. Chem. 70, 3072.

    Article  CAS  PubMed  Google Scholar 

  8. X. H. Li, D. B. Zhao, Z. F. Fei, and L. F. Wang (2006). Sci. China Ser. B Chem. 36, 181.

    Google Scholar 

  9. A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009.

    Article  CAS  PubMed  Google Scholar 

  10. Y. H. Sun, L. I. Xiao-Ping, Z. M. Mei, Y. Zhu, and L. Niu (2011). Chem. Res. Chin. Univ. 27, 6.

    CAS  Google Scholar 

  11. Y. W. Li, Y. G. Li, Y. H. Wang, X. J. Feng, Y. Lu, and E. B. Wang (2009). Inorg. Chem. 48, 6452.

    Article  CAS  PubMed  Google Scholar 

  12. G. Hou, L. Bi, B. Li, and L. Wu (2010). Inorg. Chem. 49, 6474.

    Article  CAS  PubMed  Google Scholar 

  13. R. Thangamuthu, Y. C. Pan, and S. M. Chen (2010). Electroanalysis. 22, 1812.

    Article  CAS  Google Scholar 

  14. J. D. Kim, S. Hayashi, T. Mori, and I. Honma (2007). Electrochim. Acta 53, 963.

    Article  CAS  Google Scholar 

  15. X. Wu, W. Wu, Q. Wu, and W. Yan (2017). Langmuir. 33, 4242.

    Article  CAS  PubMed  Google Scholar 

  16. L. Hu, D. S. Hecht, and G. Grüner (2010). Chem. Rev. 110, 5790.

    Article  CAS  PubMed  Google Scholar 

  17. A. Sun, J. Zheng, and Q. Sheng (2012). Electrochim. Acta 65, 64.

    Article  CAS  Google Scholar 

  18. Y. Li, X. Liu, X. Liu, N. Mai, Y. Li, W. Wei, and Q. Cai (2011). B Biointerfaces 88, 402.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Zhang, Y. Shen, J. Yuan, D. Han, Z. Wang, Q. Zhang, and L. Niu (2006). Angew. Chem. Int. Ed. 45, 5867.

    Article  CAS  Google Scholar 

  20. B. Haghighi, H. Hamidi, and L. Gorton (2010). Electrochim. Acta 55, 4750.

    Article  CAS  Google Scholar 

  21. B. K. Mishra, P. Mukherjee, S. Dash, S. Patel, and H. N. Pati (2009). Inorg. Chem. 39, 2529.

    CAS  Google Scholar 

  22. S. Roy, A. Dasgupta, and P. K. Das (2006). Langmuir 22, 4567.

    Article  CAS  PubMed  Google Scholar 

  23. L. Liu, Y. Qin, Z. X. Guo, and D. Zhu (2003). Carbon 41, 331.

    Article  CAS  Google Scholar 

  24. E. Rogelhernández, G. Alonsonuñez, J. P. Camarena, H. Espinozagómez, G. Aguirre, F. Paraguaydelgado, and R. Somanathan (2011). J. Mex. Chem. Soc. 55, 7.

    Google Scholar 

  25. R. Claude, F. Michel, F. Raymonde, and T. Rene (1983). Inorg. Chem. 22, 207.

    Article  Google Scholar 

  26. W. Guo, L. Xu, F. Li, B. Xu, Y. Yang, S. Liu, and Z. Sun (2010). Electrochim. Acta 55, 1523.

    Article  CAS  Google Scholar 

  27. S. D. L. Cruz, M. D. Green, Y. Ye, Y. A. Elabd, T. E. Long, and K. I. Winey (2012). J. Polym. Sci. Part A: Polym. Chem. 50, 338.

    Article  CAS  Google Scholar 

  28. Z. Xu, N. Gao, and S. Dong (2006). Talanta 68, 753.

    Article  CAS  PubMed  Google Scholar 

  29. J. Cheng, G. Sàghiszabó, J. A. T. And, and C. J. Miller (1996). J. Am. Chem. Soc. 118, 680.

    Article  CAS  Google Scholar 

  30. H. O. Finklea and D. D. Hanshew (1992). J. Am. Chem. Soc. 114, 3173.

    Article  CAS  Google Scholar 

  31. P. Wang, X. Wang, and G. Zhu (2000). Electroanalysis 12, 1493.

    Article  CAS  Google Scholar 

  32. Z. Li, J. Chen, D. Pan, W. Tao, L. Nie, and S. Yao (2006). Electrochim. Acta 51, 4255.

    Article  CAS  Google Scholar 

  33. T. Peter Laboratory Techniques in Electroanalytical Chemistry (Dekker, New York, 1984).

    Google Scholar 

  34. L. Guadagnini and D. Tonelli (2013). Sens. Actuators B Chem. 188, 806.

    Article  CAS  Google Scholar 

  35. A. Salimi, A. Noorbakhsh, and M. Ghadermarzi (2006). Sens. Actuators B Chemical 1, 530.

    Google Scholar 

  36. A. Salimi, V. Alizadeh, and H. Hadadzadeh (2010). Electroanalysis 16, 1984.

    Article  CAS  Google Scholar 

  37. W. Song, X. Chen, Y. Jiang, Y. Liu, C. Sun, and X. Wang (1999). Anal. Chim. Acta 394, 73.

    Article  CAS  Google Scholar 

  38. L. Li, W. Li, C. Sun, and L. Li (2002). Electroanalysis 14, 368.

    Article  Google Scholar 

  39. L. D. Li, W. J. Li, and C. Q. Li (2000). Chem. J. Chin. Univ. 21, 865.

    Google Scholar 

  40. T. Dong, F. Chen, J. Du, and C. Hu (2010). J. Cluster Sci. 21, 779.

    Article  CAS  Google Scholar 

  41. L. Liu, S. Y. Song, and P. Y. Zhang (2012). Acta Phys. Chim. Sin. 28, 427.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Natural Science Foundation of China is greatly acknowledged. Prof. Xue Duan, Beijing University of Chemical Technology, is greatly acknowledged for his kind support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunshan Zhou or Lijuan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhou, Q., Ren, X. et al. Incorporation of Keggin-Type Phosphomolybdic Acid, Ionic Liquid and Carbon Nanotube Leading to Formation of Multifunctional Ternary Composite Materials: Fabrication, Characterization and Electrochemical Reduction/Detection of Iodate, Borate and Nitrite. J Clust Sci 30, 973–984 (2019). https://doi.org/10.1007/s10876-019-01557-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01557-0

Keywords

Navigation