Advertisement

Heterodinuclear Diphosphane-Bridged Iron–Platinum Diyne Complexes as Metalloligands for the Assembly of Polymetallic Systems (Fe, Pt, Co)

  • Ahmed Said Mohamed
  • Isabelle JourdainEmail author
  • Michael KnorrEmail author
  • Stephanie Boullanger
  • Lukas Brieger
  • Carsten Strohmann
Original Paper
  • 59 Downloads

Abstract

Treatment of [(OC)3Fe(μ-C=O)(µ-dppm)Pt(PPh3)] (1a) (dppm=Ph2PCH2PPh2) with 1,7-octadiyne affords the isomeric dimetallacyclopentenones [(OC)2Fe(µ-dppm)(µ-C(=O)C{(CH2)4C≡CH}=CH)Pt(PPh3)] (2a) and [(OC)2Fe(µ-dppm)(µ-C(=O)C(H)=C{(CH2)4C≡CH})Pt(PPh3)] (2a′). In a similar manner, the reaction with 1,3-diethynylbenzene and 1,4-diethynylbenzene yields [(OC)2Fe(μ-C(=O)C{C6H4–C≡CH}=CH)(μ-dppm)Pt(PPh3)] (2b,c); using [(OC)3Fe(μ-C=O)(µ-dppa)Pt(PPh3)] (1b) (dppa=Ph2PNHPPh2) as starting material provides [(OC)2Fe(μ-C(=O)C{p-C6H4–C≡CH}=CH)(μ-dppa)Pt(PPh3)] (2d). The isomeric μ-vinylidene complexes [(OC)3Fe(µ-dppm){(µ-C=CH(C6H4C≡CH)})Pt(PPh3)] (3b,c) result from treatment of [(OC)3Fe{Si(OMe)3}(μ-dppm)Pt(H)(PPh3)] with the two aromatic diynes. Reaction of 2a with a further equivalent of 1a yields the structurally characterized tetranuclear species [(OC)2Fe(µ-dppm)(µ-C(=O)C{(CH2)2}=CH)Pt(PPh3)]2 (4a). A dissymmetric heterotetranuclear dimetallacyclopentenone 4b is produced by reacting 2b with [(OC)3Fe(μ-C=O)(µ-dppa)Pt(PPh3)] (1b). An unusual heterotetranuclear dimetallacyclopentenone-μ-vinylidene compound 4c results from reaction of 3c with 1 equivalent of 1a. The dimetallacyclopentenone-dicobaltatetrahedrane cluster [(OC)2Fe(µ-dppm)(µ-C(=O)C{(CH2)42-HC2Co2(CO)6}=CH)Pt(PPh3)] (5a) is formed by addition of [Co2(CO)8] to 2a. Likewise, [(OC)2Fe(µ-dppm)(µ-C(=O)C{C6H42-HC2Co2(CO)4(µ-dppm)}=CH)Pt(PPh3)] (5b) is produced by mixing [Co2(CO)62-dppm)] with 2b. When attempting to prepare a heterotetranuclear complex by reacting 2a with [Co2(CO)6{P(OPh)3}2], the targeted compound was not formed. Instead, the substitution product [(OC)2Fe(µ-dppm)(µ-C(=O)C{(CH2)4C≡CH}=CH)Pt{P(OPh)3}] (6a) was isolated. 2b reacts in an analogous manner yielding [(OC)2Fe(μ-C(=O)C{C6H4–C≡CH}=CH)(μ-dppm)Pt{P(OPh)3}] (6b).

Keywords

Diyne Cluster Cobalt Iron Platinum 

Notes

Supplementary material

10876_2019_1555_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1503 kb)

References

  1. 1.
    W. Bonrath, K. R. Pörschke, G. Wilke, K. Angermund, and C. Krüger (1988). Angew. Chem. Int. Ed. Engl. 27, 833–835.CrossRefGoogle Scholar
  2. 2.
    H. Werner, T. Rappert, and J. Wolf (1990). Isr. J. Chem. 30, 377–384 (For the hydrometallation of [RhCl(PiPr3)2] with HC≡CC6H4C≡CH leading to formation of the bis(alkyne) complex [(PiPr3)2ClRh(HC≡CC6H4C≡CH)RhCl(PiPr3)2]).CrossRefGoogle Scholar
  3. 3.
    M. L. Buil and M. A. Esteruelas (1999). Organometallics 18, 1798–1800.CrossRefGoogle Scholar
  4. 4.
    C. E. Shuchart, A. Wojcicki, M. Calligaris, P. Faleschini, and G. Nardin (1994). Organometallics 13, 1999–2009.CrossRefGoogle Scholar
  5. 5.
    A. Wojcicki (1993). J. Cluster Sci. 4, 59–75.CrossRefGoogle Scholar
  6. 6.
    C. E. Shuchart, M. Calligaris, M. R. Churchill, P. Faleschini, R. F. See, and A. Wojcicki (1996). Inorg. Chim. Acta 243, 109–120.CrossRefGoogle Scholar
  7. 7.
    A. Wojcicki (2002). Inorg. Chem. Commun. 5, 82–97.CrossRefGoogle Scholar
  8. 8.
    M. I. Bruce, K. Costuas, J.-F. Halet, B. C. Hall, P. J. Low, B. K. Nicholson, B. W. Skelton, and A. H. White (2002). J. Chem. Soc., Dalton Trans. 3, 383–398.CrossRefGoogle Scholar
  9. 9.
    C.-K. Wong, G.-L. Lu, C.-L. Ho, W.-Y. Wong, and Z. Lin (2012). J. Cluster Sci. 23, 885–900.CrossRefGoogle Scholar
  10. 10.
    A. J. Amoroso, L. P. Clarke, J. E. Davies, J. Lewis, H. R. Powell, P. R. Raithby, and G. P. Shields (2001). J. Organomet. Chem. 635, 119–131.CrossRefGoogle Scholar
  11. 11.
    M. I. Bruce, N. N. Zaitseva, B. W. Skelton, and A. H. White (1996). J. Cluster Sci. 7, 109–119.CrossRefGoogle Scholar
  12. 12.
    M.-A. Hsu, W.-Y. Yeh, G.-H. Lee, and S.-M. Peng (1999). J. Organomet. Chem. 588, 32–41.CrossRefGoogle Scholar
  13. 13.
    A. Choualeb, P. Braunstein, J. Rosé, and R. Welter (2004). Inorg. Chem. 43, 57–71.CrossRefGoogle Scholar
  14. 14.
    P. Mathur, A. K. Dash, M. Hossain, C. V. V. Satyanarayana, A. L. Rheingold, L. M. Liable-Sands, and G. P. A. Yap (1997). J. Organomet. Chem. 532, 189–199.CrossRefGoogle Scholar
  15. 15.
    K. Onitsuka, X.-Q. Tao, W.-Q. Wang, Y. Otsuka, K. Sonogashira, T. Adachi, and T. Yoshida (1994). J. Organomet. Chem. 473, 195–204.CrossRefGoogle Scholar
  16. 16.
    R. D. Adams, B. Qu, M. D. Smith, and T. A. Albright (2002). Organometallics 21, 2970–2978 (For the reaction of 1,4-bis(ferrocenyl)butadiyne with Os3(CO)10(NCMe)2).CrossRefGoogle Scholar
  17. 17.
    F.-E. Hong, J.-W. Liaw, B.-J. Chien, Y.-C. Chang, C.-C. Lin, S.-L. Wang, and F.-L. Liao (1999). Polyhedron 18, 2737–2747.CrossRefGoogle Scholar
  18. 18.
    C. E. Housecroft, B. F. G. Johnson, M. S. Khan, J. Lewis, P. R. Raithby, M. E. Robson and D. A. Wilkinson (1992). J. Chem. Soc., Dalton Trans. 3171–3178.Google Scholar
  19. 19.
    S. Clement, L. Guyard, A. Khatyr, M. Knorr, Y. Rousselin, M. M. Kubicki, Y. Mugnier, S. Richeter, P. Gerbier, and C. Strohmann (2012). J. Organomet. Chem. 699, 56–66.CrossRefGoogle Scholar
  20. 20.
    C. J. McAdam, N. W. Duffy, B. H. Robinson, and J. Simpson (1996). Organometallics 15, 3935–3943.CrossRefGoogle Scholar
  21. 21.
    D. Osella, L. Milone, C. Nervi, and M. Ravera (1998). Eur. J. Inorg. Chem. 10, 1473–1477.CrossRefGoogle Scholar
  22. 22.
    B. Le Guennic, K. Costuas, J.-F. Halet, C. Nervi, M. A. J. Paterson, M. A. Fox, R. L. Roberts, D. Albesa-Jove, H. Puschmann, J. A. K. Howard, and P. J. Low (2005). C. R. Chim. 8, 1883–1896.CrossRefGoogle Scholar
  23. 23.
    M. Zirngast, C. Marschner, and J. Baumgartner (2019). Molecules 24, 205.CrossRefGoogle Scholar
  24. 24.
    M. G. Karpov, S. P. Tunik, V. R. Denisov, G. L. Starova, A. B. Nikol’skii, F. M. Dolgushin, A. I. Yanovsky, and Y. T. Struchkov (1995). J. Organomet. Chem. 485, 219–225.CrossRefGoogle Scholar
  25. 25.
    C. Moreno, M.-L. Marcos, M.-J. Macazaga, J. Gomez-Gonzalez, R. Gracia, F. Benito-Lopez, E. Martinez-Gimeno, A. Arnanz, M.-E. Medina, C. Pastor, J. Gonzalez-Velasco, and R.-M. Medina (2007). Organometallics 26, 5199–5208.CrossRefGoogle Scholar
  26. 26.
    H. Li, F.-L. Ting, C.-L. Ho, Y. H. Lo, H.-Y. Lam, N. Zhu, M.-S. Cheung, Z. Lin, and W.-Y. Wong (2015). J. Cluster Sci. 26, 291–307.CrossRefGoogle Scholar
  27. 27.
    S. A. MacLaughlin, S. Doherty, N. J. Taylor, and A. J. Carty (1992). Organometallics 11, 4315–4325.CrossRefGoogle Scholar
  28. 28.
    N. L. Berre-Cosquer and R. Kergoat (1992). J. Organomet. Chem. 427, 325–333.CrossRefGoogle Scholar
  29. 29.
    X.-N. Chen, J. Zhang, Y.-Q. Yin, and X.-Y. Huang (1999). Organometallics 18, 3164–3169.CrossRefGoogle Scholar
  30. 30.
    M. Knorr, C. Strohmann, and P. Braunstein (1996). Organometallics 15, 5653–5663.CrossRefGoogle Scholar
  31. 31.
    M. Knorr and C. Strohmann (2000). Eur. J. Inorg. Chem. 2000, 241–252.CrossRefGoogle Scholar
  32. 32.
    M. Knorr, I. Jourdain, F. Villafane, and C. Strohmann (2004). J. Organomet. Chem. 690, 1456–1466.CrossRefGoogle Scholar
  33. 33.
    M. Knorr, I. Jourdain, A. S. Mohamed, A. Khatyr, S. G. Koller, and C. Strohmann (2015). J. Organomet. Chem. 780, 70–85.CrossRefGoogle Scholar
  34. 34.
    I. Jourdain, M. Knorr, C. Strohmann, C. Unkelbach, S. Rojo, P. Gomez-Iglesias, and F. Villafane (2013). Organometallics 32, 5343–5359.CrossRefGoogle Scholar
  35. 35.
    M. Knorr and I. Jourdain (2017). Coord. Chem. Rev. 350, 217–247.CrossRefGoogle Scholar
  36. 36.
    I. Jourdain, L. Vieille-Petit, S. Clément, M. Knorr, F. Villafañe, and C. Strohmann (2006). Inorg. Chem. Commun. 9, 127–131.CrossRefGoogle Scholar
  37. 37.
    X. L. R. Fontaine, G. B. Jacobsen, B. L. Shaw, and M. Thornton-Pett (1988). J. Chem. Soc. Dalton Trans. 3, 741–750.CrossRefGoogle Scholar
  38. 38.
    P. Braunstein, M. Knorr, A. DeCian, and J. Fischer (1995). Organometallics 14, 1302–1309.CrossRefGoogle Scholar
  39. 39.
    C. A. Mirkin, G. L. Geoffroy, P. D. Macklin, and A. L. Rheingold (1990). Inorg. Chim. Acta 170, 11–15.CrossRefGoogle Scholar
  40. 40.
    R. D. Adams, I. Arafa, G. Chen, J. C. Lii, and J. G. Wang (1990). Organometallics 9, (1990), 2350–2357.CrossRefGoogle Scholar
  41. 41.
    S. Akabori, T. Kumagai, T. Shirahige, S. Sato, K. Kawazoe, C. Tamura, and M. Sato (1987). Organometallics 6, 526–531.CrossRefGoogle Scholar
  42. 42.
    H.-C. Weiss, D. Bläser, R. Boese, B. M. Doughan, and M. M. Haley (1997). Chem. Commun. 18, 1703–1704.CrossRefGoogle Scholar
  43. 43.
    J. M. A. Robinson, B. M. Kariuki, R. J. Gough, K. D. M. Harris, and D. Philp (1997). J. Solid State Chem. 134, 203–206.CrossRefGoogle Scholar
  44. 44.
    G. R. Desiraju (1990). J. Chem. Soc., Chem. Commun. 6, 454–455.CrossRefGoogle Scholar
  45. 45.
    G. R. Desiraju (2005). Chem. Commun. 24, 2995–3001.CrossRefGoogle Scholar
  46. 46.
    M. Haumann, R. Meijboom, J. R. Moss, and A. Roodt (2004). Dalton Trans. 11, 1679–1686.CrossRefGoogle Scholar
  47. 47.
    N. Duffy, J. McAdam, C. Nervi, D. Osella, M. Ravera, B. Robinson, and J. Simpson (1996). Inorg. Chim. Acta 247, 99–104.CrossRefGoogle Scholar
  48. 48.
    J. H. K. Yip, J. Wu, K.-Y. Wong, K. P. Ho, L. L. Koh, and J. J. Vittal (2004). Eur. J. Inorg. Chem. 2004, 1056–1062.CrossRefGoogle Scholar
  49. 49.
    A. Ceccon, S. Santi, L. Orian, and A. Bisello (2004). Coord. Chem. Rev. 248, 683–724.CrossRefGoogle Scholar
  50. 50.
    P. Mücke, M. Zabel, R. Edge, D. Collison, S. Clement, S. Zalis, and R. F. Winter (2011). J. Organomet. Chem. 696, 3186–3197.CrossRefGoogle Scholar
  51. 51.
    E. C. Fitzgerald, A. Ladjarafi, N. J. Brown, D. Collison, K. Costuas, R. Edge, J.-F. Halet, F. Justaud, P. J. Low, H. Meghezzi, T. Roisnel, M. W. Whiteley, and C. Lapinte (2011). Organometallics 30, 4180–4195.CrossRefGoogle Scholar
  52. 52.
    M. Knorr and C. Strohmann (1998). Eur. J. Inorg. Chem. 1998, 495–499.CrossRefGoogle Scholar
  53. 53.
    P. Braunstein, M. Knorr, A. Tiripicchio, and M. Tiripicchio-Camellini (1989). Angew. Chem. Int. Ed. Engl. 28, 1361–1363.CrossRefGoogle Scholar
  54. 54.
    G. M. Sheldrick (2015). Acta Cryst. A71, 3–8.Google Scholar
  55. 55.
    G. M. Sheldrick (2015). Acta Cryst. C71, 3–8.Google Scholar
  56. 56.
    CrysAlis CCD, CrysAlis RED and CrysAlis PRO, Oxford Diffraction Ltd, Abingdon (UK), 2012.Google Scholar
  57. 57.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339–341.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut UTINAM, UMR CNRS 6213, Equipe “Matériaux et Surfaces Fonctionnels”Université Bourgogne Franche-ComtéBesançonFrance
  2. 2.Institut de Recherches MédicinalesCentre d’Etude et de Recherche de DjiboutiDjiboutiDjibouti
  3. 3.Anorganische ChemieTechnische Universität DortmundDortmundGermany

Personalised recommendations