Skip to main content
Log in

Antibacterial Activity of Alkaloids, Flavonoids, Saponins and Tannins Mediated Green Synthesised Silver Nanoparticles Against Pseudomonas aeruginosa and Bacillus subtilis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, metabolites like tannin, saponin, alkaloids and flavonoids from Cassia alata, Euphorbia hirta, Thespesia populnea and Wrightia tinctoria were utilized for green synthesize of silver nanoparticles, where crude extracts were commonly used. The silver nanoparticles produced using the metabolites were crystalline and found to be spherical and rod shaped with size range between 17 and 30 nm. All the silver nanoparticles were effective against the microorganisms used in this study. Minimum inhibitory concentration of silver nanoparticles produced using flavonoid and tannin of E. hirta and saponin of C. alata, was found to be at 0.5 µg concentration against Pseudomonas aeruginosa and Bacillus subtilis. All the nanoparticles were able to disturb the cell membrane and released out internal protein and also showing impact on swarming motility of both the bacteria used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Bernhoft, A brief review on bioactive compounds in plants. Bioactive compounds in plants-benefits and risks for man and animals, in Proceedings: The Norwegian Academy of Science and Letters, Oslo, 13–14 November, vol. 50 (2008), pp. 11–17.

  2. V. E. Tyler Herbs of Choice: The Therapeutic Use of Phytomedicinals (Pharmaceutical Products Press, London, 1994).

    Google Scholar 

  3. A. V. Samrot, N. Shobana, and R. Jenna (2018). Bionanoscience 8, 632–646. https://doi.org/10.1007/s12668-018-0521-8.

    Article  Google Scholar 

  4. B. E. VanWyk and M. Wink Medicinal Plants of the World: An Illustrated Scientific Guide to Important (Medicinal Plants and their Uses Timber Press, Portland, 2004).

    Google Scholar 

  5. A. V. Samrot, P. Raji, A. J. Selvarani, and P. Nishanthini (2018). Biocatal. Agric. Biotechnol. 16, 253–270.

    Article  Google Scholar 

  6. T. T. Cushnie, B. Cushnie, and A. J. Lamb (2014). Int. J. Antimicrob. Agents 44, (5), 377–386.

    Article  CAS  PubMed  Google Scholar 

  7. D. Mabhiza, T. Chitemerere, and S. Mukanganyama (2016). Int. J. Med. Chem. 2016, 6304163.

    PubMed  PubMed Central  Google Scholar 

  8. T. T. Cushnie and A. J. Lamb (2005). Int. J. Antimicrob. Agents 26, (5), 343–356.

    Article  CAS  PubMed  Google Scholar 

  9. A. Scalbert (1991). Phytochemistry 30, (12), 3875–3883.

    Article  CAS  Google Scholar 

  10. N. Wafa, G. Sofiane, and K. Mouhamed (2016). Eur. J. Exp. Biol. 6, (3), 55–61.

    Google Scholar 

  11. M. Arabski, A. Węgierek-Ciuk, G. Czerwonka, A. Lankoff, and W. Kaca (2012). Biomed. Res. Int. 2012, 286216.

    Google Scholar 

  12. P. Avato, R. Bucci, A. Tava, C. Vitali, A. Rosato, Z. Bialy, and M. Jurzysta (2006). Phytother. Res. 20, (6), 454–457.

    Article  CAS  PubMed  Google Scholar 

  13. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, (1), 17–28.

    Article  CAS  PubMed  Google Scholar 

  14. R. Mariselvam, A. J. A. Ranjitsingh, A. U. R. Nanthini, K. Kalirajan, C. Padmalatha, and P. M. Selvakumar (2014). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 129, 537–541.

    Article  CAS  Google Scholar 

  15. J. R. Nakkala, R. Mata, A. K. Gupta, and S. R. Sadras (2014). Eur. J. Med. Chem. 85, 784–794.

    Article  CAS  PubMed  Google Scholar 

  16. Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, and C. P. Yu (2014). Colloids Surf. A Physicochem. Eng. Asp. 444, 226–231.

    Article  CAS  Google Scholar 

  17. P. Banerjee, M. Satapathy, A. Mukhopahayay, and P. Das (2014). Bioresour. Bioprocess. 1, (1), 3.

    Article  Google Scholar 

  18. A.J. Harborne, in Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. (Springer, Berlin, 1998).

  19. S. Zeidan, A. Hijazi, H. Rammal, A. Kobaissi, and B. Badran (2014). World J. Pharm. Pharm. Sci. 3, (17), 1889–1898.

    CAS  Google Scholar 

  20. F. N. Ujowundu, A. I. Ukoha, A. O. Ojiako, and R. N. Nwaoguikpe (2015). Pharm. Anal. Acta. 6, 444.

    Google Scholar 

  21. B. O. Obadoni and P. O. Ochuko (2002). Global J. Pure Appl. Sci. 8, 203–208.

    CAS  Google Scholar 

  22. A. Saravanakumar, M. M. Peng, M. Ganesh, J. Jayaprakash, M. Mohankumar, and H. T. Jang (2017). Artif. Cells Nanomed. Biotechnol. 45, (6), 1165–1171.

    Article  CAS  Google Scholar 

  23. A. R. De Araujo, P. V. Quelemes, M. L. G. Perfeito, L. I. de Lima, M. C. Sá, P. H. M. Nunes, and J. R. D. S. de Almeida (2015). Ann. Clin. Microbiol. Antimicrob. 14, (1), 25.

    Article  PubMed  PubMed Central  Google Scholar 

  24. A. Ugurlu, A. K. Yagci, S. Ulusoy, B. Aksu, and G. Bosgelmez-Tinaz (2016). Asian Pac. J. Trop. Biomed. 6, (8), 698–701.

    Article  Google Scholar 

  25. S. Gunalan, R. Sivaraj, and V. Rajendran (2012). Prog. Nat. Sci. Mat. Int. 22, (6), 693–700.

    Article  Google Scholar 

  26. K. Maruthai, K. Vallayyachari, T. Ravibalan, S. A. Philip, A. V. Samrot, and M. Muthuraj (2017). Prog. Biosci. Bioeng. 1, (1), 29–35.

    Article  Google Scholar 

  27. R. Das, S. S. Nath, D. Chakdar, G. Gope, and R. Bhattacharjee (2009). J. Nanotechnol. 5, 1–6.

    Google Scholar 

  28. S. Jain and M. S. Mehata (2017). Sci. Rep. 7, (1), 15867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, and R. Zboril (2006). J. Phys. Chem. B 110, (33), 16248–16253.

    Article  CAS  PubMed  Google Scholar 

  30. S. A. Gaddam, V. S. Kotakadi, D. S. Gopal, Y. S. Rao, and A. V. Reddy (2014). J. Nanostruct. Chem. 4, (1), 82.

    Article  Google Scholar 

  31. G. Bhumi, M. Lingarao, and N. Savithramma (2013). Ind. Stre Resj J. 3, (3), 1–7.

    Google Scholar 

  32. R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha (2012). Nanosci. Nanotechnol. Lett. 4, (1), 30–34.

    Article  CAS  Google Scholar 

  33. P. B. Raja, A. A. Rahim, A. K. Qureshi, and K. Awang (2006). Mater. Sci.-Pol. 32, (3), 408–413.

    Article  CAS  Google Scholar 

  34. B. Ajitha, Y. A. K. Reddy, and P. S. Reddy (2015). Mater. Sci. Eng. C 49, 373–381.

    Article  CAS  Google Scholar 

  35. K. Anandalakshmi, J. Venugobal, and V. Ramasamy (2016). Appl. Nanosci. 6, (3), 399–408.

    Article  CAS  Google Scholar 

  36. M. R. Shaik, M. Khan, M. Kuniyil, A. Al-Warthan, H. Z. Alkhathlan, M. R. H. Siddiqui, J. P. Shaik, A. Ahamed, A. Mahmood, M. Khan, and S. F. Adil (2018). Sustainability 18, (10), 913.

    Article  CAS  Google Scholar 

  37. B. K. Mehta, M. Chhajlani, and B. D. Shrivastava (2017). IOP Conf. Ser. J. Phys. 836, 012050.

    Article  CAS  Google Scholar 

  38. P. Senthilkumar, S. Rashmitha, P. Veera, C. V. Ignatious, C. SaiPriya, and A. V. Samrot (2018). J. Pure Appl. Microbiol. 12, (02), 969–974.

    Article  CAS  Google Scholar 

  39. F. J. Osonga, A. Akgul, I. Yazgan, A. Akgul, R. Ontman, V. M. Kariuki, and O. A. Sadik (2018). RSC Adv. 8, (9), 4649–4661.

    Article  CAS  Google Scholar 

  40. R. Srinivasan, L. Vigneshwari, T. Rajavel, R. Durgadevi, A. Kannappan, K. Balamurugan, and A. V. Ravi (2018). Environ. Sci. Pollut. Res. 25, (11), 10538–10554.

    Article  CAS  Google Scholar 

  41. V. Gopinath, S. Priyadarshini, M. F. Loke, J. Arunkumar, E. Marsili, D. MubarakAli, and J. Vadivelu (2015). Arab. J. Chem. 10, (8), 1107–1117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony V. Samrot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raji, P., Samrot, A.V., Keerthana, D. et al. Antibacterial Activity of Alkaloids, Flavonoids, Saponins and Tannins Mediated Green Synthesised Silver Nanoparticles Against Pseudomonas aeruginosa and Bacillus subtilis. J Clust Sci 30, 881–895 (2019). https://doi.org/10.1007/s10876-019-01547-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01547-2

Keywords

Navigation