Advertisement

Journal of Cluster Science

, Volume 30, Issue 3, pp 813–825 | Cite as

Fatty Acids of Enteromorpha intestinalis Emulsified Drug Delivery Nanoemulsion: Evaluation of Loading Mechanism and Release Kinetics for Drug Delivery

  • Abdul Azeez Nazeer
  • Sudarshana Deepa VijaykumarEmail author
  • Muthupandian Saravanan
Original Paper
  • 36 Downloads

Abstract

The selection of bio-surfactants in consonance with the pharmaceutical drug in the preparation of nanoemulsion for the controlled release of drugs and bio-compatibility is still a scientific moot. We have investigated the possible mechanism of drug-surfactant interaction in this research that can iron out the surfactant identification complication. The bio-surfactants 9-Octadecenoic acid, 9-Octadeceamide and Isopropyl Myristate isolated from a marine weed Enteromorpha intestinalis were used together to stabilize the nanoemulsion. The encapsulation efficiency and release kinetics of Aspirin in nanoemulsion under different pH conditions from the nanoemulsion was studied. Nanoemulsion was prepared by the ultrasonication method and characterized by centrifugation, capillary viscometer, freeze–thaw cycle assays, dynamic light scattering analysis (DLS) and HR-TEM. The mechanism of drug surfactant interaction deduced using Spectrophotometric and ATR-FTIR analysis revealed the possible bond formations. In-vitro drug release profiles of aspirin (model drug) were evaluated by dialysis in different pH (1.2, 6.8 and 7.4) using by UV-spectrophotometry and the effective release of aspirin was observed in pH 6.8. The release kinetics was studied to identify the mode of release. The bio-surfactant based nanoemulsion of 15:6:9 composition exhibited ideal stability and controlled release in all pH conditions with linearity and time-dependent paradigm.

Keywords

Nanoemulsion Bio-surfactant Drug delivery E. intestinalis Pharmaceutical potential 

Notes

Acknowledgements

The authors are thankful to DST-SERB for providing us with the fund to carry out the project under the project file number YSS/2014/000637. We also thank The South India Textile Research Association, Coimbatore for their help in GC–MS analysis. We thank Dr. K. Gopal Shankar for rendering his help in reframing the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    K. Mross, B. Niemann, U. Massing, J. Drevs, C. Unger, R. Bhamra, and C. E. Swenson (2004). Cancer Chemother. Pharmacol. 54, 514–524.CrossRefGoogle Scholar
  2. 2.
    N. Abdul Azeez, V. Sivapriya, V. S. Deepa (2017). Int. Res. J. Pharm. 8 (8), 34–40.  https://doi.org/10.7897/2230-8407.088141.
  3. 3.
    J. Lao, J. Madani, T. Puertolas, M. Alvarez, A. Hernandez, R. Pazo-Cid, and A. Artal (2013). A. Anton Torres. J. Drug Deliv. 2013, 456409.CrossRefGoogle Scholar
  4. 4.
    Y. Barenholz (2012). J. Control. Release 160, 117–134.CrossRefGoogle Scholar
  5. 5.
    H. Cabral and K. Kataoka (2014). J. Control. Release 190, 465–476.CrossRefGoogle Scholar
  6. 6.
    D. D. Von Hoff, M. M. Mita, R. K. Ramanathan, G. J. Weiss, A. C. Mita, P. M. LoRusso, H. A. Burris, L. L. Hart, S. C. Low, D. M. Parsons, S. E. Zale, J. M. Summa, H. Youssoufian, and J. C. Sachdev (2016). Clin. Cancer Res. 22, 3157.CrossRefGoogle Scholar
  7. 7.
    Y. Singh, J. G. Meher, K. Raval, F. A. Khan, M. Chaurasia, N. K. Jain, and M. K. Chourasia (2017). J. Control. Release 252, 28–49.CrossRefGoogle Scholar
  8. 8.
    M. Jaiswal, R. Dudhe, P. K. Sharma (2015). 3 Biotech 5, 123–127.Google Scholar
  9. 9.
    N. Ma, G. Z. Yang, X. W. Liu, Y. J. Yang, I. Mohamed, G. R. Liu, and J. Y. Li (2017). Iran. J. Pharm. Res. 16, 1443–1451.Google Scholar
  10. 10.
    N. B. Nogard (2018). Clin. Pharmacokinet 57, 663–672.CrossRefGoogle Scholar
  11. 11.
    X. Xu, K. Zhang, L. Zhao, C. Li, W. Bu, Y. Shen, Z. Gu, B. Chang, C. Zheng, C. Lin, and A. C. S. Appl (2016). Mater. Interfaces 8, 32706–32716.CrossRefGoogle Scholar
  12. 12.
    P. Pavlidis and I. Bjarnason (2015). Curr. Pharm. Des 21, 5089–5093.CrossRefGoogle Scholar
  13. 13.
    P. Yingchoncharoen, D. S. Kalinowski, and D. R. Richardson (2016). Pharmacol. Rev. 68, 701–787.CrossRefGoogle Scholar
  14. 14.
    B. Subramanian, F. Kuo, E. Ada, T. Kotyla, T. Wilson, S. Yoganathan, and R. Nicolosi (2008). Int. Immunopharmacol. 8, 1533–1539.CrossRefGoogle Scholar
  15. 15.
    D. J. McClements and S. M. Jafari (2018). Adv. Colloid Interface Sci. 251, 55–79.CrossRefGoogle Scholar
  16. 16.
    X. Zhang, X. Sun, J. Li, X. Zhang, T. Gong, and Z. Zhang (2011). Die Pharm. 66, 496–505.Google Scholar
  17. 17.
    H. Zhao, H. Lu, T. Gong, and Z. Zhang (2013). Int. J. Nanomed. 8, 1959–1973.CrossRefGoogle Scholar
  18. 18.
    Y. Fu and W. J. Kao (2010). Expert Opin. Drug Deliv. 7, 429.CrossRefGoogle Scholar
  19. 19.
    M. Miastkowska, E. Sikora, J. Ogonowski, M. Zielina, and A. Ludzik (2016). Colloids Surf. A Physicochem. Eng. Asp. 510, 63–68.  https://doi.org/10.1016/j.colsurfa.2016.07.060.CrossRefGoogle Scholar
  20. 20.
    V. Bhardwaj, T. Bhardwaj, K. Sharma, A. Gupta, S. Chauhan, S. S. Cameotra, S. Sharma, R. Gupta, and P. Sharma (2014). RSC Adv. 4, 24935–24943.CrossRefGoogle Scholar
  21. 21.
    P. Treenate and P. Monvisade (2017). Int. J. Biol. Macromol. 99, 71–78.CrossRefGoogle Scholar
  22. 22.
    G. T. Jeong and D. H. Park (2015). Korean J. Chem. Eng 32, 2463.CrossRefGoogle Scholar
  23. 23.
    S. Suvimol, S. G. Min, P. Bejrapha, and M. J. Choi (2010). Food Res. Int. 43, 8.CrossRefGoogle Scholar
  24. 24.
    K. S. Parekh, H. H. Parekh, and P. S. Rao (1984). Indian J. Mar. Sci. 13, 45–56.Google Scholar
  25. 25.
    X. Vecino, L. Barbosa-Pereira, R. Devesa-Rey, J. M. Cruz, and A. B. Moldes (2015). J. Sci. Food Agric. 95, (2), 313.CrossRefGoogle Scholar
  26. 26.
    A. Mondal (2015). Sep. Sci. Technol. 50, (13), 1999.Google Scholar
  27. 27.
    Z. Wei, G. Zeng, F. Huang, M. Kosa, Q. Sun, X. Meng, D. Huang, and A. J. Ragauskas (2015). Appl. Microbiol. Biotechnol. 99, (17), 7369.CrossRefGoogle Scholar
  28. 28.
    P. Ashok, M. J. Jessop, S. H. Stubbins, P. Champagne, and P. G. Jessop (2015). Biores. Technol. 184, 286–290.CrossRefGoogle Scholar
  29. 29.
    S. M. Moon, S. A. Lee, J. H. Hong, J. S. Kim, D. K. Kim, and C. S. Kim (2018). Int. Immunopharmacol. 56, 179.CrossRefGoogle Scholar
  30. 30.
    A. O. A. Hamed and S. M. H. Ayoub (2015). Pharma Innov. 4, (5), 1.Google Scholar
  31. 31.
    J. S. L. Oliveria, S. Lange, B. Dobner, and D. Brezesinski (2017). Chem. Phys. Lipids 204, 1.CrossRefGoogle Scholar
  32. 32.
    D. Dhiman, A. K. Pal, A. Mittal, and S. Saini (2017). Pharma Tutor 5, (1), 54.Google Scholar
  33. 33.
    L. Binder, J. Jatschka, D. Baurecht, M. Wirth, and C. Valenta (2017). Eur. J. Pharm. Biopharm. 120, 34.CrossRefGoogle Scholar
  34. 34.
    V. Bali, M. Ali, and J. Ali (2010). Colloids Surf. B. Biointerfaces 76, 410–420.CrossRefGoogle Scholar
  35. 35.
    A. E. Silva, G. Barratt, M. Cheron, and E. S. T. Egito (2013). Int. J. Pharm. 454, 641.CrossRefGoogle Scholar
  36. 36.
    N. Ahmad, R. Ahmad, M. A. Alam, F. J. Ahmad, and M. Amir (2018). Artif. Cells Nanomed. Biotech. 23, 1–16.Google Scholar
  37. 37.
    M. Miastkowska, E. Sikora, E. Lasoń, M. J. Garcia-Celma, E. Escribano-Ferrer, C. S. Solans, and M. Llinas (2017). Acta Biochim. Pol. 64, 713–718.CrossRefGoogle Scholar
  38. 38.
    R. Revathi, D. Chandran, L. H. Shin, and M. Sivakumar (2018). LWT-Food Sci. Technol. 96, 58.  https://doi.org/10.1016/j.lwt.2018.05.022.CrossRefGoogle Scholar
  39. 39.
    H. R. Masoumi, M. Basri, W. S. Samiun, Z. Izadiyan, and C. J. Lim (2015). Int. J. Nanomed. 10, 6469.CrossRefGoogle Scholar
  40. 40.
    W. Lu, A. L. Kelly, and S. Miao (2016). Trends Food Sci. Technol. 47, 1–9.CrossRefGoogle Scholar
  41. 41.
    X. Li, L. Wang, and B. Wang (2017). Food Chem. 229, 479.CrossRefGoogle Scholar
  42. 42.
    T. P. Sari, B. Mann, R. Kumar, R. R. B. Singh, R. Sharma, M. Bhardwaj, and S. Athira (2015). Food Hydrocoll. 43, 540.CrossRefGoogle Scholar
  43. 43.
    M. C. Ortiz-Tafoya and A. Tecante (2018). Data Brief 19, 642–650.CrossRefGoogle Scholar
  44. 44.
    J. A. Olmsted (1998). J. Chem. Educ. 75, (10), 1261.CrossRefGoogle Scholar
  45. 45.
    K. Yang, H. Peng, Y. Wen, and N. Li (2010). Appl. Surf. Sci. 256, (10), 3093–3097.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Abdul Azeez Nazeer
    • 1
  • Sudarshana Deepa Vijaykumar
    • 1
    Email author
  • Muthupandian Saravanan
    • 2
  1. 1.Nano-Bio Translational Research Laboratory, Department of BiotechnologyBannari Amman Institute of TechnologySathyamangalam, ErodeIndia
  2. 2.Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health SciencesMekelle UniversityMekelleEthiopia

Personalised recommendations