Skip to main content
Log in

Theoretical Study on the Growth Behavior and Photoelectron Spectroscopy of Lanthanum-Doped Silicon Clusters LaSi 0/− n (n = 6–20)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The growth behavior and electronic properties of the lowest energy structures of neutral LaSin (n = 6–20) and their anions were explored by means of the ABCluster global structure searching strategy combined with the mPW2PLYP double-hybrid density functional. The results revealed that the growth behavior of the lowest energy structures of anionic LaSi n (n = 10–20) clusters choose La-linked two silicon subclusters to La-encapsulated in silicon cages. For neutral LaSin (n = 6–20), the growth behavior of the lowest energy structures from substitutional structure to linked motifs and finally to encapsulated configurations occurs at n = 14 and 20, respectively. The simulated photoelectron spectroscopy, adiabatic electron affinities, vertical detachment energies, relative stability and HOMO–LUMO energy gaps were presented. Analyses of HOMO–LUMO energy gaps, relative stability, and chemical bonding reveal that the LaSi20 possesses ideal thermodynamic and chemical stability in a high Ih-symmetry endohedral motif, which can turn it into suitable constitutional units for cluster-assembled nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. F. Jarrold (1991). Science 252, 1085–1092.

    Article  CAS  Google Scholar 

  2. E. C. Honea, A. Ogura, D. R. Peale, C. Félix, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown (1999). J. Chem. Phys. 110, 12161–12172.

    Article  CAS  Google Scholar 

  3. I. Vasiliev, S. Öğüt, and J. R. Chelikowsky (1997). Phys. Rev. Lett. 78, 4805–4808.

    Article  CAS  Google Scholar 

  4. S. Nigam, C. Majumder, and S. K. Kulshreshtha (2006). J. Chem. Phys. 125, 074303.

    Article  CAS  PubMed  Google Scholar 

  5. X. L. Zhu, X. C. Zeng, and Y. A. Lei (2004). J. Chem. Phys. 120, 8985–8995.

    Article  CAS  PubMed  Google Scholar 

  6. J. C. Yang, W. G. Xu, and W. S. Xiao (2005). J. Mol. Struct. Theochem. 719, 89–102.

    Article  CAS  Google Scholar 

  7. L. P. Ding, F. H. Zhang, Y. S. Zhu, C. Lu, X. Y. Kuang, J. Lv, and P. Shao (2015). Sci. Rep. 5, 15951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Inorg. Chem. 56, 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Y. Jin, Y. H. Tian, X. Y. Kuang, C. Z. Zhang, C. Lu, J. J. Wang, J. Lv, L. P. Ding, and M. Ju (2015). J. Phys. Chem. A 119, 6738–6745.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Y. Jin, G. Maroulis, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, J. Lv, C. Z. Zhang, and M. Ju (2015). Phys. Chem. Chem. Phys. 17, 13590–13597.

    Article  CAS  PubMed  Google Scholar 

  11. X. D. Xing, A. Hermann, X. Y. Kuang, M. Ju, C. Lu, Y. Y. Jin, X. X. Xia, and G. Maroulis (2016). Sci. Rep. 6, 19656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. L. Chen, W. G. Sun, X. Y. Kuang, C. Lu, X. X. Xia, H. X. Shi, and G. Maroulis (2018). Inorg. Chem. 57, 343–350.

    Article  CAS  PubMed  Google Scholar 

  13. P. Shao, B. L. Chen, L. P. Ding, D. B. Luo, C. Lu, and X. Y. Kuang (2017). Phys. Chem. Chem. Phys. 19, 25289–25297.

    Article  CAS  PubMed  Google Scholar 

  14. M. Ju, J. Lv, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, Y. Y. Jin, and G. Maroulis (2015). RSC Adv. 5, 6560–6570.

    Article  CAS  Google Scholar 

  15. L. P. Ding, P. Shao, C. Lu, F. H. Zhang, L. Ding, and T. L. Yuan (2016). Phys. Chem. Chem. Phys. 18, 23296–23303.

    Article  CAS  PubMed  Google Scholar 

  16. M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya (2003). Chem. Phys. Lett. 371, 490–497.

    Article  CAS  Google Scholar 

  17. K. Koyasu, J. Atobe, S. Furuse, and A. Nakajima (2008). J. Chem. Phys. 129, 214301.

    Article  CAS  PubMed  Google Scholar 

  18. A. Grubisic, Y. J. Ko, H. P. Wang, and K. H. Bowen (2009). J. Am. Chem. Soc. 131, 10783–10790.

    Article  CAS  PubMed  Google Scholar 

  19. A. J. Kenyon (2005). Semicond. Sci. Technol. 20, R65–R84.

    Article  CAS  Google Scholar 

  20. H. Tsunoyama, M. Shibuta, M. Nakaya, T. Eguchi, and A. Nakajima (2018). Acc. Chem. Res. 51, 1735–1745.

    Article  CAS  PubMed  Google Scholar 

  21. X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. D. Xing (2016). J. Phys. Chem. C 120, 677–684.

    Article  CAS  Google Scholar 

  22. R. N. Zhao, Y. H. Yuan, J. G. Han, and Y. H. Duan (2014). RSC Adv. 4, 59331–59337.

    Article  CAS  Google Scholar 

  23. R. N. Zhao and J. G. Han (2014). RSC Adv. 4, 64410–64418.

    Article  CAS  Google Scholar 

  24. T. G. Liu, W. Q. Zhang, and Y. L. Li (2014). Front. Phys. 9, 210–218.

    Article  CAS  Google Scholar 

  25. C. G. Li, L. J. Pan, P. Shao, L. P. Ding, H. T. Feng, D. B. Luo, and B. Liu (2015). Theor. Chem. Acc. 134, 34.

    Article  CAS  Google Scholar 

  26. J. C. Yang, J. Wang, and Y. R. Hao (2015). Theor. Chem. Acc. 134, 81.

    Article  CAS  Google Scholar 

  27. X. H. Xie, D. S. Hao, Y. M. Liu, and J. C. Yang (2015). Comput. Theor. Chem. 1074, 1–8.

    Article  CAS  Google Scholar 

  28. X. H. Xie, D. S. Hao, and J. C. Yang (2015). Chem. Phys. 461, 11–19.

    Article  CAS  Google Scholar 

  29. R. N. Zhao, R. Chen, Y. H. Yuan, F. Gu, and J. G. Han (2016). J. Chem. Sci. 128, 365–371.

    Article  CAS  Google Scholar 

  30. Z. Lenčéš, L. Benco, J. Madejová, Y. Zhou, L. Kipsová, and K. Hirao (2008). J. Eur. Ceram. Soc. 28, 1917–1922.

    Article  CAS  Google Scholar 

  31. H. Yu, L. L. Wang, J. L. Everaert, Y. L. Jiang, D. Mocuta, N. Horiguchi, N. Collaert, and K. D. Meyer (2017). IEEE Electron Device Lett. 38, 843–846.

    Article  CAS  Google Scholar 

  32. Q. Peng and J. Shen (2008). J. Chem. Phys. 128, 084711.

    Article  CAS  PubMed  Google Scholar 

  33. T. T. Cao, X. J. Feng, L. X. Zhao, X. Liang, Y. M. Lei, and Y. H. Luo (2008). Eur. Phys. J. D 49, 343–351.

    Article  CAS  Google Scholar 

  34. D. B. Zhang and J. Shen (2004). J. Chem. Phys. 120, 5104–5109.

    Article  CAS  PubMed  Google Scholar 

  35. Y. M. Liu, J. C. Yang, and L. Cheng (2018). Inorg. Chem. 57, 12934–12940.

    Article  CAS  PubMed  Google Scholar 

  36. S. He and J. C. Yang (2017). Theor. Chem. Acc. 136, 93.

    Article  CAS  Google Scholar 

  37. H. M. Ning, Y. S. Gu, L. Cheng, and J. C. Yang (2018). Chin. J. Struct. Chem. 37, 854–870.

    CAS  Google Scholar 

  38. J. C. Yang, Y. T. Feng, X. H. Xie, H. W. Wu, and Y. M. Liu (2016). Theor. Chem. Acc. 135, 204.

    Article  CAS  Google Scholar 

  39. Y. T. Feng, J. C. Yang, and Y. M. Liu (2016). Theor. Chem. Acc. 135, 258.

    Article  CAS  Google Scholar 

  40. L. Y. Hou, J. C. Yang, and Y. M. Liu (2017). J. Mol. Model. 23, 117.

    Article  CAS  PubMed  Google Scholar 

  41. J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173–24181.

    Article  CAS  PubMed  Google Scholar 

  42. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  43. M. Dolg, H. Stoll, and H. Preuss (1993). Theor. Chim. Acta. 85, 441–450.

    Article  CAS  Google Scholar 

  44. M. Dolg, H. Stoll, A. Savin, and H. Preuss (1989). Theor. Chim. Acta. 75, 173–194.

    Article  CAS  Google Scholar 

  45. X. Y. Cao and M. Dolg (2001). J. Chem. Phys. 115, 7348–7355.

    Article  CAS  Google Scholar 

  46. D. E. Woon and T. H. D. Jr (1993). J. Chem. Phys. 98, 1358–1371.

    Article  CAS  Google Scholar 

  47. T. Schwabe and S. Grimme (2006). Phys. Chem. Chem. Phys. 8, 4398–4401.

    Article  CAS  PubMed  Google Scholar 

  48. J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, and L. S. Wang (1999). Phys. Rev. B 60, R11297.

    Article  CAS  Google Scholar 

  49. D. J. Tozer and N. C. Handy (1998). J. Chem. Phys. 109, 10180–10189.

    Article  CAS  Google Scholar 

  50. T. Lu and F. W. Chen (2012). J. Comput. Chem. 33, 580–592.

    Article  CAS  PubMed  Google Scholar 

  51. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207–5217.

    Article  CAS  PubMed  Google Scholar 

  52. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, Revision C.01 (Gaussian Inc, Wallingford, CT, 2010).

    Google Scholar 

  53. Q. Lu and K. A. Peterson (2016). J. Chem. Phys. 145, 054111.

    Article  CAS  PubMed  Google Scholar 

  54. B. A. Hess (1985). Phys. Rev. A 32, 756–763.

    Article  CAS  Google Scholar 

  55. B. A. Hess (1986). Phys. Rev. A 33, 3742–3748.

    Article  CAS  Google Scholar 

  56. G. Jansen and B. A. Hess (1989). Phys. Rev. A 39, 6016–6017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21863007 and 21263010), by Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Gran No. NMGIRT-A1603), and by Natural Science Foundation of Inner Mongolia (Grant No. 2016MS0307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Y., Li, S. et al. Theoretical Study on the Growth Behavior and Photoelectron Spectroscopy of Lanthanum-Doped Silicon Clusters LaSi 0/− n (n = 6–20). J Clust Sci 30, 789–796 (2019). https://doi.org/10.1007/s10876-019-01541-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01541-8

Keywords

Navigation