Skip to main content
Log in

Evaluation of Antibacterial and Anticancer Potential of Polyaniline-Bimetal Nanocomposites Synthesized from Chemical Reduction Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study gold (Au) and gold–platinum (Au–Pt) colloids were synthesized by borohydride reduction method in the presence of poly(N-vinyl-2-pyrrolidone) as a stabilizing agent. Besides, pristine polyaniline (PANI), PANI-Au nanocomposites, and PANI-Au–Pt nanocomposites were prepared. The synthesized nano-composites characterized by UV–Vis, FT-IR, XRD, and HR-TEM with energy dispersive X-ray techniques. Au and Au–Pt NPs were spherical in shape with particle sizes at 8 and 3 nm, respectively. PANI-Au and PANI-Au–Pt nanocomposites were also spherical in shape with particle sizes at 3 and 2 nm, respectively. Pristine PANI, PANI-Au, and PANI-Au–Pt nanocomposites were subjected to antibacterial activity against gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Vibrio cholerae) bacterial pathogens. PANI-Au–Pt nanocomposite showed significant antibacterial activity (33 ± 1.10 mm dia) against B. subtilis. Besides, the MIC of pristine PANI, PANI-Au, and PANI-Au–Pt nanocomposites were found to be 75, 50 and 25 µg/mL, respectively. Besides, the in vitro anticancer investigations against HepG2 liver cancer cells revealed the highest cytotoxicity for PANI-Au–Pt nanocomposite (21.25 µg/mL) followed by PANI-Au nanocomposite (32 µg/mL) and pristine PANI (49 µg/mL). Overall, the present study showed considerable antibacterial and anticancer activity and suggested their potential use in pharmaceuticals after completing successful clinical trials for safety and affordability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Pugazhendhi, R. Prabhu, K. Muruganantham, R. Shanmuganathan, and S. Natarajan (2019). J. Photochem. Photobiol. 190, 86.

    Article  CAS  Google Scholar 

  2. S. Honary, H. Barabadi, P. Ebrahimi, F. Naghibi, and A. Alizadeh (2015). J. Nano Res. 30, 106.

    Article  CAS  Google Scholar 

  3. M. Saravanan, T. Asmalash, A. Gebrekidan, D. Gebreegziabiher, T. Araya, H. Hilekiros, H. Barabadi, and K. Ramanathan (2018). Pharm. Nanotechnol. 6, 17.

    Article  CAS  PubMed  Google Scholar 

  4. H. Barabadi (2017). Cell. Mol. Biol. 63, 3.

    Article  PubMed  Google Scholar 

  5. H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). J. Clust. Sci. 30, 259. https://doi.org/10.1007/s10876-018-01491-7.

    Article  CAS  Google Scholar 

  6. H. Barabadi, A. Alizadeh, M. Ovais, A. Ahmadi, Z. K. Shinwari, and M. Saravanan (2018). IET Nanobiotechnol. 12, 377.

    Article  PubMed  Google Scholar 

  7. J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad (2017). Nat. Rev. Cancer. 17, 20.

    Article  CAS  PubMed  Google Scholar 

  8. M. Ferrari (2005). Nat. Rev. Cancer. 5, 161.

    Article  CAS  PubMed  Google Scholar 

  9. I. Yacoby and I. Benhar (2008). Nanomedicine (Lond). 3, 329.

    Article  CAS  PubMed  Google Scholar 

  10. M. Kaushik and A. Moores (2016). Green Chem. 18, 622.

    Article  CAS  Google Scholar 

  11. M. Saravanan, B. Ramachandran, and H. Barabadi (2018). Microb. Pathog. 114, 180.

    Article  PubMed  Google Scholar 

  12. T. R. Pasquale and J. S. Tan (2005). Clin. Infect. Dis. 40, 127.

    Article  CAS  PubMed  Google Scholar 

  13. A. Salabat, F. Mirhoseini, M. Mahdieh, and H. Saydi (2015). New J. Chem. 39, 4109.

    Article  CAS  Google Scholar 

  14. M. Saravanan and J. D. Domb Abraham (2013). Eur. J. Nanomed. 5, 81.

    Article  CAS  Google Scholar 

  15. E. G. R. Fernandes, V. Zucolotto, and A. A. A. De Queiroz (2010). J. Macromol. Sci. A. 47, 1203.

    Article  CAS  Google Scholar 

  16. K. D. McKeon, A. Lewis, and J. W. Freeman (2010). J. Appl. Polym. Sci. 115, 1566.

    Article  CAS  Google Scholar 

  17. L. P. Wang, W. Wang, L. Di, Y. N. Lu, and J. Y. Wang (2010). Colloids Surf. B Biointerfaces. 80, 72.

    Article  CAS  PubMed  Google Scholar 

  18. P. Humpolicek, V. Kasparkova, P. Saha, and J. Stejskal (2012). Synth. Met. 162, 722.

    Article  CAS  Google Scholar 

  19. C. Dhivya, S. A. A. Vandarkuzhali, and N. Radha (2015). Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2015.12.005.

  20. P. S. C. Narendra, A. Rameshwar, A. Rohit, and C. A. Suresh (2010). J. Ind. Council Chem. 27, 128.

    Google Scholar 

  21. A. Shalini, R. Nishanthi, P. Palani, and V. Jaisankar (2016). Mater. Today Proc. 3, 1633.

    Article  Google Scholar 

  22. R. Prasad, K. Chaitanya, M. Tejoram, D. Basavaraju, K. Rao, R. R. Kumar, S. Sreenivasan, and A. Phani (2012). J. Pharm. Res. 5, 370.

    Google Scholar 

  23. J. M. Kinyanjui, N. R. Wijeratne, J. Hanks, and D. W. Hatchett (2006). Electrochim. Acta. 51, 2825.

    Article  CAS  Google Scholar 

  24. M. S. Tamboli, M. V. Kulkarni, R. H. Patil, W. N. Gade, S. C. Navale, and B. B. Kale (2012). Colloids Surf. B Biointerfaces. 92, 35.

    Article  CAS  PubMed  Google Scholar 

  25. P. K. Prabhakar, S. Raj, P. R. Anuradha, S. N. Sawant, and M. Doble (2011). Colloids Surf. B Biointerfaces. 86, 146.

    Article  CAS  PubMed  Google Scholar 

  26. X. Liang, M. Sun, L. Li, R. Qiao, K. Chen, Q. Xiao, and F. Xu (2012). Dalton Trans. 41, 2804.

    Article  CAS  PubMed  Google Scholar 

  27. T. Juknius, M. Ruzauskas, T. Tamulevicius, R. Siugzdiniene, I. Jukniene, A. Vasiliauskas, A. Jurkeviciute, and S. Tamulevicius (2016). Materials (Basel). 9, 371.

    Article  CAS  PubMed Central  Google Scholar 

  28. Z. Kucekova, P. Humpolicek, V. Kasparkova, T. Perecko, M. Lehocký, I. Hauerlandová, P. Sáha, and J. Stejskal (2014). Colloids Surf. B Biointerfaces. 116, 411.

    Article  CAS  PubMed  Google Scholar 

  29. F. M. Zahed, B. Hatamluyi, F. Lorestani, and Z. Eshaghi (2018). J. Pharm. Biomed. Anal. 161, 12.

    Article  CAS  PubMed  Google Scholar 

  30. M. Banerjee, S. Sharma, A. Chattopadhyay, and S. S. Ghosh (2011). Nanoscale. 3, 5120.

    Article  CAS  PubMed  Google Scholar 

  31. M. Lin, D. Wang, S. Li, Q. Tang, S. Liu, R. Ge, Y. Liu, D. Zhang, H. Sun, and H. Zhang (2016). Biomaterials. 104, 213.

    Article  CAS  PubMed  Google Scholar 

  32. L. E. Ibarra, L. Tarres, S. Bongiovanni, C. A. Barbero, M. J. Kogan, V. A. Rivarola, M. L. Bertuzzi, and E. I. Yslas (2015). Ecotoxicol. Environ. Saf. 114, 84.

    Article  CAS  PubMed  Google Scholar 

  33. Z. B. Anna, B. Patrycja, J. Petr, E. Petrovský, B. Pavel, and H. Daniel (2016). Colloids Surf. B Biointerfaces. 141, 382.

    Article  CAS  PubMed  Google Scholar 

  34. Y.-S. Li, B.-F. Chen, X.-J. Li, W. K. Zhang, and H.-B. Tang (2014). PLOS ONE. 9, e107361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P. Boomi, H. G. Prabu, and J. Mathiyarasu (2013). Colloids Surf. B Biointerfaces. 103, 9.

    Article  CAS  PubMed  Google Scholar 

  36. P. Boomi, J. Anandha Raj, S. P. Palaniappan, G. Poorani, S. Selvam, H. Gurumallesh Prabu, P. Manisankar, J. Jeyakanthan, and V. K. Langeswaran (2018). J. Photochem. Photobiol. B. 178, 323.

    Article  CAS  PubMed  Google Scholar 

  37. M. Saravanan, V. Gopinath, M. K. Chaurasia, A. Syed, F. Ameen, and N. Purushothaman (2018). Microb. Pathog. 115, 57.

    Article  CAS  PubMed  Google Scholar 

  38. M. Kasithevar, P. Periakaruppan, S. Muthupandian, and M. Mohan (2017). Microb. Pathog. 107, 327.

    Article  CAS  PubMed  Google Scholar 

  39. D. Y. Joh, L. Sun, M. Stangl, A. AlZaki, S. Murty, P. P. Santoiemma, J. J. Davis, B. C. Baumann, M. Alonso-Basanta, D. Bhang, G. D. Kao, A. Tsourkas, and J. F. Dorsey (2013). PLoS ONE. 8, e62425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Yallappa, J. Manjanna, and B. L. Dhananjaya (2015). Spectrochim. Acta A. Mol. Biomol. Spectrosc. 137, 236.

    Article  CAS  PubMed  Google Scholar 

  41. R. Kumar, A. K. Pandey, A. K. Tyagi, G. K. Dey, S. V. Ramagiri, J. R. Bellare, A. Goswami, and J. Colloid (2009). Interface Sci. 337, 523.

    Article  CAS  Google Scholar 

  42. L. Tamašauskaitė, R. Tarozaitė, and A. Vaškelis (2006). Chemija. 17, 13.

    Google Scholar 

  43. K. Mallick, M. J. Witcomb, and M. S. Scurrell (2006). J. Mater. Sci. 41, 6189.

    Article  CAS  Google Scholar 

  44. V. Sridevi, S. Malathi, and C. Devi (2011). Chem. Sci. J. 2011, CSJ-26.

  45. Z. Zhang and M. Wan (2002). Synth Met. 128, 83.

    Article  CAS  Google Scholar 

  46. S. Vimalraj, S. Rajalakshmi, D. Preeth, S. Vinoth Kumar, T. Deepak, V. Gopinath, K. Murugan, and S. Chatterjee (2018). Mater. Sci. Eng. C. 83, 187.

    Article  CAS  Google Scholar 

  47. S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, J. G. Story, and M. F. Bertino (2005). Chem. Mater. 17, 227.

    Article  CAS  Google Scholar 

  48. Z. Zhang, Z. Wei, and M. Wan (2002). Macromolecules. 35, 5937.

    Article  CAS  Google Scholar 

  49. L. Zhang, H. Peng, P. A. Kilmartin, C. Soeller, R. Tilley, and J. Travas-Sejdic (2008). Macromol.Rapid Commun. 29, 598.

    Article  CAS  Google Scholar 

  50. X. Feng, C. Mao, G. Yang, W. Hou, and J.-J. Zhu (2006). Langmuir. 22, 4384.

    Article  CAS  PubMed  Google Scholar 

  51. L. Liu, T. Wei, X. Guan, X. Zi, H. He, and H. Dai (2009). J. Phys. Chem. C. 113, 8595.

    Article  CAS  Google Scholar 

  52. K. Yano, V. Nandwana, G. S. Chaubey, N. Poudyal, S. Kang, H. Arami, J. Griffis, and J. P. Liu (2009). J. Phys. Chem. C. 113, 13088.

    Article  CAS  Google Scholar 

  53. A. Soni, C. M. Pandey, S. Solanki, and G. Sumana (2015). RSC Adv. 5, 45767.

    Article  CAS  Google Scholar 

  54. G. Burygin, B. Khlebtsov, A. Shantrokha, L. Dykman, V. Bogatyrev, and N. Khlebtsov (2009). Nanoscale Res. Lett. 4, 794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. P. Boomi, R. M. Ganesan, G. Poorani, H. Gurumallesh Prabu, S. Ravikumar, and J. Jeyakanthan (2019). Mater. Sci. Eng. C. 99, 202.

    Article  CAS  Google Scholar 

  56. M. R. Gizdavic-Nikolaidis, J. Bennett, Z. Zujovic, S. Swift, and G. A. Bowmaker (2012). Synth. Met. 162, 1114.

    Article  CAS  Google Scholar 

  57. K.-S. Huang, C.-H. Yang, S.-L. Huang, C.-Y. Chen, Y.-Y. Lu, and Y.-S. Lin (2016). Int. J. Mol. Sci. 17, 1578.

    Article  CAS  PubMed Central  Google Scholar 

  58. C. Wu (2012). Express Polym. Lett. 6, 465.

    Article  CAS  Google Scholar 

  59. M. Saravanan, S. K. Barik, D. MubarakAli, P. Prakash, and A. Pugazhendhi (2018). Microb. Pathog. 116, 221.

    Article  CAS  PubMed  Google Scholar 

  60. S. Honary, K. Ghajar, P. Khazaeli, and P. Shalchian (2011). Trop. J. Pharm. Res. 10, 69.

    Article  CAS  Google Scholar 

  61. K. Amarnath, J. Kumar, T. Reddy, V. Mahesh, S. R. Ayyappan, and J. Nellore (2012). Colloids Surf. B Biointerfaces. 92, 254.

    Article  CAS  PubMed  Google Scholar 

  62. M. Saravanan, S. Arokiyaraj, T. Lakshmi, and A. Pugazhendhi (2018). Microb. Pathog. 117, 68.

    Article  CAS  PubMed  Google Scholar 

  63. R. Anjali, S. Palanisamy, M. Vinosha, M. Thenmozhi, P. Rajasekar, T. Marudhupandi, P. Kumar, P. Boomi, and N. M. Prabhu (2018). J. Photochem. Photobiol. 185, 117.

    Article  CAS  Google Scholar 

  64. M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari (2016). Nanomedicine (Lond). 11, 3157.

    Article  CAS  PubMed  Google Scholar 

  65. R. Subbaiya, M. Saravanan, A. R. Priya, K. R. Shankar, M. Selvam, M. Ovais, R. Balajee, and H. Barabadi (2017). IET Nanobiotechnol. 11, 965.

    Article  PubMed  Google Scholar 

  66. H. Barabadi, M. Ovais, Z. K. Shinwari, and M. Saravanan (2017). Green Chem. Lett. Rev. 10, 285.

    Article  CAS  Google Scholar 

  67. J. Baharara, T. Ramezani, N. Hosseini, and M. Mousavi (2018). Iran. J. Pharm. Res. 17, 627.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran. J. Pharm. Res. 16, 1167.

    PubMed  PubMed Central  Google Scholar 

  69. R. Balint, N. J. Cassidy, and S. H. Cartmell (2014). Acta Biomater. 10, 2341.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank University Grants Commission, New Delhi for providing Assistant professor (No. F. 14-13/2013 (Inno/ASIST) dated 30.03.2013) under the Innovative scheme to carry out the teaching and research work. The authors thankfully acknowledge the DST-FIST [SR/FST/LSI-667/2016(C)], DST-PURSE [SR/PURSE Phase 2/38 (G)] and MHRD-RUSA 2.0 [F. 24/51/2014-U, Policy (TNMulti-Gen), Dept. of Edn. Govt. of India] for the financial supports and infrastructure facilities. The authors (H. Gurumallesh Prabu) acknowledge the UGC-BSR, New Delhi, India for the financial assistance by the onetime grant scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pandi Boomi or Muthupandian Saravanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boomi, P., Poorani, G.P., Palanisamy, S. et al. Evaluation of Antibacterial and Anticancer Potential of Polyaniline-Bimetal Nanocomposites Synthesized from Chemical Reduction Method. J Clust Sci 30, 715–726 (2019). https://doi.org/10.1007/s10876-019-01530-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01530-x

Keywords

Navigation