Abstract
In the present study, bio-augmented silver nanoparticles with Derris trifoliata seed extract (AgNP-DT) have been developed. Formation of AgNP-DT has been confirmed with X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FTIR). Even though introduced for the first time as a catalyst owing to high surface area, the as-prepared nanoparticles showed one of the best catalytic activity in the reduction of a water soluble azo dye–methyl orange. An incredible pseudo-first order rate constant (0.3208 min−1) and activity parameter (1086 s−1 g−1) were obtained for the catalytic reduction of methyl orange with 4.9 μg AgNP-DT. Furthermore, AgNP-DT exhibits a good selectivity and sensitivity towards mercury(II) ions over other metals in aqueous solution. Absorbance of AgNP-DT exhibits a good linear relationship against concentration of Hg2+ with a limit of detection (LOD) of 1.55 μM. The mechanism of sensing activity of AgNP-DT was elucidated by measuring the variation in the zeta potential of the system with increasing concentration of Hg2+. Moreover the proposed method could be practicably applied for the detection of Hg2+ in real water samples with a percentage recovery in range of 91.41–108.07%.
Graphical Abstract

This is a preview of subscription content, access via your institution.






References
G. Mance Pollution Threat of Heavy Metals in Aquatic Environments (Springer, Berlin, 2012).
K. Naseem, Z. H. Farooqi, R. Begum, and A. Irfan (2018). J. Clean. Prod. 187, 296.
M. Saeed, A. Ahmad, R. Boddula, Inamuddin, Au Haq, and A. Azhar (2018). Environ. Chem. Lett. 16, 287.
C. Nie, P. Sun, L. Zhu, S. Gao, H. Wu, and B. Wang (2017). Environ Chem. 14, 188.
C. Fersi, L. Gzara, and M. Dhahbi (2005). Desalination 185, 399.
D. Mani and C. Kumar (2014). Int. J. Environ. Sci. Technol. 11, 843.
C. Liu, P. Wu, L. Tran, N. Zhu, and Z. Dang (2018). Environ. Chem. 15, 286.
L. M. Soldatkina and E. V. Sagaidak (2010). J. Water Chem. Technol. 32, 212.
S. S. Hassan, A. R. Solangi, M. H. Agheem, Y. Junejo, N. H. Kalwar, and Z. A. Taga (2011). J. Hazard. Mater. 190, 1030.
H. Hu, J. H. Xin, H. Hu, X. Wang, D. Miao, and Y. Liu (2015). J. Mater. Chem. A 3, 11157.
Y.-C. Chang and D.-H. Chen (2009). J. Hazard. Mater. 165, 664.
P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M. H. Whangbo (2008). Angewandte Chemie Int. Edn. 47, 7931.
S.-Y. Lin, Y.-T. Tsai, C.-C. Chen, C.-M. Lin, and C.-H. Chen (2004). J. Phys. Chem. B 108, 2134.
N. Kulkarni and U. Muddapur (2014). J. Nanotechnol. 2014, 510246.
P. Kumar, M. Govindaraju, S. Senthamilselvi, and K. Premkumar (2013). Colloids Surf B Biointerfaces 103, 658.
Q. Wang, D. Kim, D. D. Dionysiou, G. A. Sorial, and D. Timberlake (2004). Environ. Pollut. 131, 323.
M. C. Houston (2011). J. Clin. Hypertens. 13, 621.
K. Leopold, M. Foulkes, and P. Worsfold (2010). Analytica Chimica Acta. 663, 127.
S. W. Thomas, G. D. Joly, and T. M. Swager (2007). Chem. Rev. 107, 1339.
N. Wanichacheva, M. Siriprumpoonthum, A. Kamkaew, and K. Grudpan (2009). Tetrahedron Lett. 50, 1783.
K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour (2012). Sensors Actuators B Chem. 161, 880.
R. Tabaraki and N. Sadeghinejad (2018). Ecotoxicol. Environ. Saf. 153, 101.
F. Geng, X. Jiang, Y. Wang, C. Shao, K. Wang, P. Qu, and M. Xu (2018). Sensors Actuators B Chem. 260, 793.
X. Zhang, W. Shi, X. Chen, and Z. Xie (2018). Sensors Actuators B Chem. 255, 3074.
H. Yu, D. Long, and W. Huang (2018). Sensors Actuators B Chem. 264, 164.
Y. Zhou, W. Huang, and Y. He (2018). Sensors Actuators B Chem. 270, 187.
M. Zhao, H. Yu, and Y. He (2019). Sensors Actuators B Chem. 283, 329.
Y. Gao, K. Wu, H. Li, W. Chen, M. Fu, K. Yue, X. Zhu, and Q. Liu (2018). Sensors Actuators B Chem. 273, 1635.
H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu, and X. Zhang (2018). Sensors Actuators B Chem. 271, 336.
X. Zhu, W. Chen, K. Wu, H. Li, M. Fu, Q. Liu, and X. Zhang (2018). New J. Chem. 42, 1501.
X. Xue, F. Wang, and X. Liu (2008). J. Am. Chem. Soc. 130, 3244.
J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem. 410, 4519.
S. Kaviya and E. Prasad (2014). ACS Sustain. Chem. Eng. 2, 699.
N. Bonnia, M. Kamaruddin, M. Nawawi, S. Ratim, H. Azlina, and E. Ali (2016). Procedia Chem. 19, 594.
A. Harborne Phytochemical Methods a Guide to Modern Techniques of Plant Analysis (Springer, Berlin, 1998).
S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.
S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). New J. Chem 41, 14288.
A. Patterson (1939). Phys. Rev. 56, 978.
C. Jiang, S. Liu, W. He, X. Luo, S. Zhang, Z. Xiao, X. Qiu, and H. Yin (2012). Molecules 17, 657.
A. Yenesew, J. T. Kiplagat, S. Derese, J. O. Midiwo, J. M. Kabaru, M. Heydenreich, and M. G. Peter (2006). Phytochemistry 67, 988.
L.-R. Xu, J. Wu, and S. Zhang (2006). J. Asian Nat. Prod. Res. 8, 9.
Y. Takeda, K. Yano, H. Ayabe, T. Masuda, H. Otsuka, E. Sueyoshi, T. Shinzato, and M. Aramoto (2008). J. Nat. Med. 62, 476.
M. Nasrollahzadeh, S. M. Sajadi, E. Honarmand, and M. Maham (2015). New J. Chem. 39, 4745.
V. Vidhu and D. Philip (2014). Micron 56, 54.
V. Vidhu and D. Philip (2014). Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 117, 102.
D. Kang and M. Trenary (2000). Surf. Sci. 470, L13.
D. C. Kalyani, A. A. Telke, S. P. Govindwar, and J. P. Jadhav (2009). Water Environ. Res. 81, 298.
T. Shen, C. Jiang, C. Wang, J. Sun, X. Wang, and X. Li (2015). RSC Adv. 5, 58704.
B. Baruah, G. J. Gabriel, M. J. Akbashev, and M. E. Booher (2013). Langmuir 29, 4225.
T. Liu, J. X. Dong, S. G. Liu, N. Li, S. M. Lin, Y. Z. Fan, J. L. Lei, H. Q. Luo, and N. B. Li (2017). J. Hazard. Mater. 322, 430.
K. Z. Kamali, A. Pandikumar, S. Jayabal, R. Ramaraj, H. N. Lim, B. H. Ong, C. S. D. Bien, Y. Y. Kee, and N. M. Huang (2016). Microchimica Acta. 183, 369.
P. Vasileva, T. Alexandrova and I. Karadjova (2017). J. Chem. 2017.
L.-J. Huang, R.-Q. Yu, and X. Chu (2015). Analyst 140, 4987.
Acknowledgements
The author (NC) is grateful to University Grants Commission (UGC), Government of India, New Delhi, India for providing financial assistance under the Faculty Development Programme. The authors are thankful to Inter-University Instrumentation Centre (DST-SAIF and DST-PURSE, Govt. of India) and School of Environmental Sciences, MGU (KSCSTE-SARD, VERC Project, Govt. of Kerala) for providing the instrumentation facility as well as other support. The authors are also thankful to Dr. A.P. Thomas, Director, ACESSD and Dr. C.T. Aravindakumar, Professor, SES-MGU for their valuable support for the study.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cyril, N., George, J.B., Joseph, L. et al. Catalytic Degradation of Methyl Orange and Selective Sensing of Mercury Ion in Aqueous Solutions Using Green Synthesized Silver Nanoparticles from the Seeds of Derris trifoliata. J Clust Sci 30, 459–468 (2019). https://doi.org/10.1007/s10876-019-01508-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-019-01508-9