Skip to main content

Atomic Structures and Electronic Properties of Large-Sized GeN Clusters (N = 45, 50, 55, 60, 65, 70) by First-Principles Global Search

Abstract

A two-step unbiased global search was performed to explore the lowest-energy structures of large GeN clusters with N = 45–70 atoms. It has been revealed that the most stable structures for these large-sized Ge clusters are stuffed cages. Based on the lowest-energy structures, the theoretical results for the size-dependent structural transition, binding energy and ionization potential compare well with the available experimental data. Overall speaking, the structural characteristics and electronic properties of GeN clusters in the considered size range gradually approach the bulk limits, but still with certain deviations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. J. M. Hunter, J. L. Fye, M. F. Jarrold, and J. E. Bower (1994). Phys. Rev. Lett. 73, 2063.

    Article  CAS  PubMed  Google Scholar 

  2. Q. L. Zhang, Y. Liu, R. F. Curl, F. K. Tittel, and R. E. Smalley (1988). J. Chern. Phys. 88, 1670.

    Article  CAS  Google Scholar 

  3. Y. Negishi, H. Kawamata, T. Hayase, M. Gomei, R. Kishi, F. Hayakawa, A. Nakajima, and K. Kaya (1997). Chem. Phys. Lett. 269, 199.

    Article  CAS  Google Scholar 

  4. Y. Negishi, H. Kawamata, F. Hayakawa, A. Nakajima, and K. Kaya (1998). Chem. Phys. Lett. 294, 370.

    Article  CAS  Google Scholar 

  5. K. Fuke and S. Yoshida (1999). Eur. Phys. J. D 9, 123.

    Article  CAS  Google Scholar 

  6. S. Yoshida and K. Fuke (1999). J. Chem. Phys. 111, 3880.

    Article  CAS  Google Scholar 

  7. S. Schäfer and R. Schäfer (2008). Phys. Rev. B 77, 205211.

    Article  CAS  Google Scholar 

  8. X. Liu, X. Lei, J. Le, and C. Ouyang (2015). J. Clust. Sci. 26, 1001.

    Article  CAS  Google Scholar 

  9. H. U. Rehman, M. Springborg, and Y. Dong (2009). Eur. Phys. J. D 52, 39.

    Article  CAS  Google Scholar 

  10. J. J. Zhao, J. L. Wang, and G. H. Wang (2000). Phys. Lett. A 275, 281.

    Article  CAS  Google Scholar 

  11. J. L. Wang, M. L. Yang, G. H. Wang, and J. J. Zhao (2003). Chem. Phys. Lett. 367, 448.

    Article  CAS  Google Scholar 

  12. J. L. Wang, G. H. Wang, and J. J. Zhao (2001). Phys. Rev. B 64, 205411.

    Article  CAS  Google Scholar 

  13. S. Bulusu, S. Yoo, and X. C. Zeng (2005). J. Chem. Phys. 122, 164305.

    Article  CAS  PubMed  Google Scholar 

  14. L. Wang and J. J. Zhao (2008). J. Chem. Phys. 128, 024302.

    Article  CAS  PubMed  Google Scholar 

  15. L. Z. Zhao, W. C. Lu, W. Qin, Q. J. Zang, C. Z. Wang, and K. M. Ho (2008). Chem. Phys. Lett. 455, 225.

    Article  CAS  Google Scholar 

  16. T. Truong Ba and N. Minh Tho (2011). J. Chem. Theory. Comput. 7, 1119.

    Article  CAS  Google Scholar 

  17. P. F. Li and B. C. Pan (2012). J. Phys.: Condens. Matter 24, 305802.

    CAS  Google Scholar 

  18. B. X. Li, F. S. Liang, Y. H. Zhu, J. Xu, and G. Q. Lai (2005). J. Mol. Struct. (THEOCHEM) 756, 19.

    Article  CAS  Google Scholar 

  19. F. S. Liang and B. X. Li (2004). Phys. Lett. A 328, 407.

    Article  CAS  Google Scholar 

  20. S. J. Ma and G. H. Wang (2006). J. Mol. Struct. (THEOCHEM) 767, 75.

    Article  CAS  Google Scholar 

  21. S. Yoo and X. C. Zeng (2006). J. Chem. Phys. 124, 184309.

    Article  CAS  PubMed  Google Scholar 

  22. L. Z. Zhao, W. C. Lu, W. Qin, C. Z. Wang, and K. M. Ho (2008). J. Phys. Chem. A 112, 5815.

    Article  CAS  PubMed  Google Scholar 

  23. W. Qin, W. C. Lu, Q. J. Zang, L. Z. Zhao, G. J. Chen, C. Z. Wang, and K. M. Ho (2010). J. Chem. Phys. 132, 214509.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Tai, J. Murakami, C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe (2003). Eur. Phys. J. D 24, 295.

    Article  CAS  Google Scholar 

  25. W. Qin, W. C. Lu, L. Z. Zhao, Q. J. Zang, G. J. Chen, C. Z. Wang, and K. M. Ho (2009). J. Chem. Phys. 131, 124507.

    Article  CAS  PubMed  Google Scholar 

  26. W. C. Lu, C. Z. Wang, L. Z. Zhao, W. Zhang, W. Qin, and K. M. Ho (2010). Phys. Chem. Chem. Phys. 12, 8551.

    Article  CAS  PubMed  Google Scholar 

  27. H. Li, W. Chen, X. Han, L. Li, Q. Sun, Z. Guo, and Y. Jia (2015). J. Comput. Chem. 36, 1919.

    Article  CAS  PubMed  Google Scholar 

  28. Y. Dong, M. Springborg, Y. Pang, and F. M. Morillon (2013). Comput. Theor. Chem. 1021, 16.

    Article  CAS  Google Scholar 

  29. Z. F. Chen, H. J. Jiao, G. Seifert, A. H. C. Horn, D. K. Yu, T. Clark, W. Thiel, and P. Von Ragué Schleyer (2003). J. Comput. Chem. 24, 948.

    Article  CAS  PubMed  Google Scholar 

  30. J. J. Zhao, J. L. Wang, J. Jellinek, S. Yoo, and X. C. Zeng (2005). Eur. Phys. J. D 34, 35.

    Article  CAS  Google Scholar 

  31. S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng (2004). J. Am. Chem. Soc. 126, 13845.

    Article  CAS  PubMed  Google Scholar 

  32. J. J. Zhao, L. Ma, and B. Wen (2007). J. Phys.: Condens. Matter 19, 226208.

    Google Scholar 

  33. J. G. Wang, J. J. Zhao, L. Ma, and G. H. Wang (2007). Eur. Phys. J. D 45, 289.

    Article  CAS  Google Scholar 

  34. D. Wu, X. Wu, X. Q. Liang, R. L. Shi, Z. Li, X. M. Huang, and J. J. Zhao (2018). J. Phys. Chem. C 122, 11086.

    Article  CAS  Google Scholar 

  35. K. M. Ho, A. A. Shvartsburg, B. C. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold (1998). Nature 392, 582.

    Article  CAS  Google Scholar 

  36. D. M. Deaven and K. M. Ho (1995). Phys. Rev. Lett. 75, 288.

    Article  CAS  PubMed  Google Scholar 

  37. J. J. Zhao and R. H. Xie (2004). J. Comput. Theor. Nanosci. 1, 117.

    Article  Google Scholar 

  38. D. J. Wales and J. P. K. Doye (1997). J. Phys. Chem. A 101, 5111.

    Article  CAS  Google Scholar 

  39. D. J. Wales and H. A. Scheraga (1999). Science 285, 1368.

    Article  CAS  PubMed  Google Scholar 

  40. J. J. Zhao, R. L. Shi, L. W. Sai, X. M. Huang, and Y. Su (2016). Mol. Simul. 42, 809.

    Article  CAS  Google Scholar 

  41. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  PubMed  Google Scholar 

  42. B. Delley (1990). J. Chem. Phys. 92, 508.

    Article  CAS  Google Scholar 

  43. B. Delley (2000). J. Chem. Phys. 113, 7756.

    Article  CAS  Google Scholar 

  44. X. M. Huang, H. G. Xu, S. J. Lu, Y. Su, R. B. King, J. J. Zhao, and W. J. Zheng (2014). Nanoscale 6, 14617.

    Article  CAS  PubMed  Google Scholar 

  45. X. M. Huang, S. J. Lu, X. Q. Liang, Y. Su, L. W. Sai, Z. G. Zhang, J. J. Zhao, H. G. Xu, and W. J. Zheng (2015). J. Phys. Chem. C 119, 10987.

    Article  CAS  Google Scholar 

  46. X. Q. Liang, X. M. Huang, Y. Su, and J. J. Zhao (2015). Chem. Phys. Lett. 634, 255.

    Article  CAS  Google Scholar 

  47. L. W. Sai, L. L. Tang, J. J. Zhao, J. Wang, and V. Kumar (2011). J. Chem. Phys. 135, 184305.

    Article  CAS  PubMed  Google Scholar 

  48. X. Wu, S. J. Lu, X. Q. Liang, X. M. Huang, Y. Qin, M. D. Chen, J. J. Zhao, H. G. Xu, R. Bruce King, and W. J. Zheng (2017). J. Chem. Phys. 146, 044306.

    Article  CAS  PubMed  Google Scholar 

  49. C. Kittel Introduction to solid state physics (Wiley, New York, 1986).

    Google Scholar 

  50. A. Kant and B. H. Strauss (1966). J. Chem. Phys. 45, 822.

    Article  CAS  Google Scholar 

  51. J. A. Dillon Jr. and H. E. Farnsworth (1957). J. Appl. Phys. 28, 174.

    Article  CAS  Google Scholar 

  52. B. X. Li, P. L. Cao, and D. L. Que (2000). Phys. Rev. B 61, 1685.

    Article  CAS  Google Scholar 

  53. Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo (2000). Appl. Phys. Lett. 77, 1182.

    Article  CAS  Google Scholar 

  54. A. Laref, B. Bouhafs, A. Zaoui, M. Certier, and H. Aourag (2000). Phys. Status. Solidi. B 217, 911.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41641038, 11604039, 11704057). We acknowledge the Supercomputing Center of Dalian University of Technology for the computing resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12845 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Shi, R., Du, Q. et al. Atomic Structures and Electronic Properties of Large-Sized GeN Clusters (N = 45, 50, 55, 60, 65, 70) by First-Principles Global Search. J Clust Sci 30, 371–377 (2019). https://doi.org/10.1007/s10876-019-01498-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01498-8

Keywords

  • Germanium cluster
  • Structure
  • Global search