Skip to main content
Log in

Stability, Electronic and Magnetic Properties of Mn-Doped Copper Clusters: A Meta-GGA Functional Investigation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

DFT calculations were performed to investigate the stability, reactivity, electronic and magnetic properties of the CunMn (n = 2–12) clusters. The obtained results show that the Cu6Mn and Cu9Mn clusters are found more stable than the neighboring clusters. The calculated HOMO–LUMO energy gaps vary from 0.471 to 2.444 eV, suggesting a semiconductor-like feature of these binary clusters. The condensed Fukui function (f +k ) for nucleophile attack has been calculated for each atom in CunMn clusters, and the results exhibit that the reactivity was mainly localized at the Mn atom. Accordingly, the CunMn clusters are more favourable to react with a nucleophilic reagent. On the basis of the ELF analysis, a low local localization function has been obtained between the atoms in clusters, indicating an ionic character of the chemical bonds in the CunMn clusters. The analysis of the magnetic properties indicates that the Cu atoms in CunMn clusters show an antiferromagnetic alignment with respect to the Mn atom’s magnetic moment, and the magnetic moment of these clusters mostly originates from Mn atom. Moreover, NPA analysis show that the 3d electrons of Mn atom play a substantial role in the magnetic properties for CunMn clusters, and the contribution of the 4s electrons is little.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. J. Cox, J. G. Louderback, and L. A. Bloomfield (1993). Experimental observation of magnetism in rhodium clusters. Phys. Rev. Lett. 71, 923–926.

    Article  CAS  PubMed  Google Scholar 

  2. B. Palpant, B. Prevel, J. Lerme, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, and M. Broyer (1998). Optical properties of gold clusters in the size range 2–4 nm. Phys. Rev. B 57, 1963.

    Article  CAS  Google Scholar 

  3. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus (1990). Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 65, 1623–1639.

    Article  CAS  PubMed  Google Scholar 

  4. A. Soltani and A. Boudjahem (1047). Stabilities, electronic and magnetic properties of small Rhn clusters: a DFT approach. Comput. Theor. Chem. 2014, 6–14.

    Google Scholar 

  5. A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield (1994). Magnetism in 4d-transition metal clusters. Phys. Rev. B 49, 12295–12298.

    Article  CAS  Google Scholar 

  6. A. Boudjahem, A. Redjel, and T. Mokrane (2012). Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation. J. Ind. Eng. Chem. 18, 303–308.

    Article  CAS  Google Scholar 

  7. H. H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, and S. H. Tang (1997). Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir. 13, 172–175.

    Article  CAS  Google Scholar 

  8. M. Chettibi, A. Boudjahem, and M. Bettahar (2011). Synthesis of Ni/SiO2 nanoparticles for catalytic benzene hydrogenation. Transit. Metal Chem. 36, 163–169.

    Article  CAS  Google Scholar 

  9. J. Y. Zhang, Q. Fang, A. J. Kenyon, and I. W. Boyd (2003). Visible photoluminescence from nanocrystalline Ge grown at room temperature by photo-oxidation of SiGe using a 126 nm lamp. Appl. Surf. Sci. 208–209, 364–368.

    Google Scholar 

  10. C. D. Dong and X. G. Gong (2008). Magnetism enhanced layer-like structure of small cobalt clusters. Phys. Rev. B 78, 020409.

    Article  CAS  Google Scholar 

  11. K. R. GopidasJ, M. Whitesell, and M. A. Fox (2003). Synthesis, characterization and catalytic applications of a palladium-nanoparticles-cored dendrimer. Nano. Lett. 3, 1757–1760.

    Article  CAS  Google Scholar 

  12. T. Mokrane, A. Boudjahem, and M. Bettahar (2016). Benzene hydrogenation over alumina-supported nickel nanoparticles prepared by polyol method. RSC Adv. 6, 59858–59864.

    Article  CAS  Google Scholar 

  13. F. Nador, Y. Moglie, C. Vitale, M. Yus, F. Alonso, and G. Radivoy (2010). Reduction of polycyclic aromatic hydrocarbons promoted by cobalt or manganese nanoparticles. Tetrahedron. 66, 4318–4325.

    Article  CAS  Google Scholar 

  14. C.-H. Tu, A.-Q. Wang, M.-Y. Zheng, X.-D. Wang, and T. Zhang (2006). Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. Appl. Catal. A 297, 40–47.

    Article  CAS  Google Scholar 

  15. D. Li, Y. Cai, C. Chen, X. Lin, and L. Jiang (2016). Magnesium-aluminium mixed metal oxide supported copper nanoparticles as catalysts for water–gas shift reaction. Fuel. 184, 382–389.

    Article  CAS  Google Scholar 

  16. M. B. Knickelbein (2001). Experimental observation of superparamagnetism in manganese clusters. Phys. Rev. Lett. 86, 5255–5256.

    Article  CAS  PubMed  Google Scholar 

  17. P. C. Patel, S. Ghosh, and P. C. Srivastara (2017). Effect of impurity concentration on optical and magnetic properties in ZnS: Cu nanoparticles. Physica E 93, 148–152.

    Article  CAS  Google Scholar 

  18. V. S. Marakatti, S. C. Sarma, B. Joseph, D. Banerjee, and S. C. Peter (2017). Synthetically tuned atomic ordering in PdCu nanoparticles with enhanced catalytic activity towards solvent free benzylamine oxidation. ACS Appl. Mater. Interfaces 9, 3602–3615.

    Article  CAS  PubMed  Google Scholar 

  19. X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang (2008). Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem. Commun. 27, 3187–3189.

    Article  CAS  Google Scholar 

  20. J. Liu, L. Zhang, J. Zhang, T. Liu, and X. S. Zhao (2013). Bimetallic ruthenium–copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst. Nanoscale. 5, 11044–11050.

    Article  CAS  PubMed  Google Scholar 

  21. R. Habibpour and R. Vaziri (2016). Investigation of structural and electronic properties of small AunCum (n + m ≤ 5) nanoclusters for oxygen adsorption. Int. J. Nano Dimens. 7, 208–224.

    CAS  Google Scholar 

  22. H. T. Pham, N. T. Cuong, N. M. Tam, and N. T. Tung (2016). A systematic investigation on CrCun clusters, with n = 9–16: noble gas and tunable magnetic property. J. Phys. Chem. A 37, 7335–7343.

    Article  CAS  Google Scholar 

  23. X. Dong, L. Guo, C. Wen, N. Ren, Z. Cao, N. Liu, and L. L. Guo (2015). Mechanism of CO preferential oxidation catalyzed by CunPt (n = 3–12) clusters: a DFT study. Res. Chem. Intermed. 41, 10049–10066.

    Article  CAS  Google Scholar 

  24. E. Florez, F. Mondragon, and P. Fuentealba (2006). Effect of Ni and Pd on the geometry, electronic properties, and active sites of copper clusters. J. Phys. Chem. B 110, 13793–13798.

    Article  CAS  PubMed  Google Scholar 

  25. J. Wang, G. Wang, X. Chen, W. Lu, and J. Zhao (2002). Structure and magnetic properties of Co–Cu bimetallic clusters. Phys. Rev. B 66, 014419.

    Article  CAS  Google Scholar 

  26. H.-Q. Wang, X.-Y. Kuang, and H.-F. Li (2010). Density functional study of structural and electronic properties of bimetallic copper–gold clusters: comparison with pure and doped gold clusters. Phys. Chem. Chem. Phys. 12, 5156–5165.

    Article  CAS  PubMed  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, revision D.01 (Gaussian, Inc., Wallingford, 2013).

    Google Scholar 

  28. J. Tao, J. P. Perdew, V. N. Staroverov, and E. Gustavo (2003). Scuseria, climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401.

    Article  CAS  PubMed  Google Scholar 

  29. M. Dolg, U. Weding, H. Stoll, and H. Preuss (1987). Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866–872.

    Article  CAS  Google Scholar 

  30. S.-J. Lu, X.-L. Xu, G. Feng, H.-G. Xu, and W.-J. Zheng (2006). Structural and electronic properties of AuSin- (n = 4–12) clusters: photoelectron spectroscopy and ab initio calculations. J. Phys. Chem. C 120, 25628–25637.

    Article  CAS  Google Scholar 

  31. E. M. Dore and J. T. Lyon (2016). The structures of silicon clusters doped with two gold atoms, SinAu2 (n = 1–10). J. Clus. Sci. 27, 1365–1381.

    Article  CAS  Google Scholar 

  32. A. Posada-Amirillas and R. Pacheco-Conteras (2016). Computational studies of stable hexanuclear CulAgmAun (l + m + n = 6; l, m, n > 0) clusters. Int. J. Quantum Chem. 116, 1006–1015.

    Article  CAS  Google Scholar 

  33. R. S. Ram, C. N. Jarman, and P. F. Bernath (1992). Fourier transform emission spectroscopy of the copper dimer. J. Mol. Spectrosc. 156, 468–486.

    Article  CAS  Google Scholar 

  34. E. Rohling and J. J. Valentini (1986). UV laser excited fluorescence spectroscopy of the jet-cooled copper dimer. J. Chem. Phys. 84, 6560–6566.

    Article  Google Scholar 

  35. G. L. Gustev and C. W. Bauschlicher (2003). Chemical bonding, electron affinity, and ionization energies of the homonuclear 3d metal dimers. J. Phys. Chem. A 107, 4755–4767.

    Article  CAS  Google Scholar 

  36. P. Jaque and A. Tor-Labbe (2002). Characterization of copper clusters through the use of density functional theory reactivity descriptors. J. Chem. Phys. 117, 3208–3218.

    Article  CAS  Google Scholar 

  37. A. Poater, A. Duran, P. Jaque, A. Torro-labbé, and M. Sola (2006). Molecular structure and bonding of copper cluster monocarbonyls CunCO (n = 1–9). J. Chem. B 110, 6526–6536.

    Article  CAS  Google Scholar 

  38. S. Ganguly, M. Kabir, S. Datta, B. Sanyal, and A. Mookerjee (2008). Magnetism in small bimetallic Mn–Co clusters. Phys. Rev. B 78, 014402.

    Article  CAS  Google Scholar 

  39. P. Bobadova-Parvanova, K. A. Jackson, S. Srinivas, and M. Horoi (2005). Structure, bonding, and magnetism in manganese clusters. J. Chem. Phys. 122, 014310.

    Article  CAS  Google Scholar 

  40. M. D. Morse (1986). Clusters of transition-metal atoms. Chem. Rev. 86, 1049–1109.

    Article  CAS  Google Scholar 

  41. J.-G. Yao, Z.-Y. Tian, and Y.-X. Wang (2011). The electronic and magnetic properties of MnScn (n = 2–10) clusters. Mol. Phys. 109, 1957–1965.

    Article  CAS  Google Scholar 

  42. W. Bouderbala, A. Boudjahem, and A. Soltani (1047). Geometries, stabilities, electronic and magnetic properties of small PdnIr (n = 1–8) clusters from first-principles calculations. Mol. Phys. 2014, 6–14.

    Google Scholar 

  43. A. Soltani, A. Boudjahem, and M. Bettahar (2016). Electronic and magnetic properties of small RhnCa (n = 1–9) clusters: a DFT study. Int. J. Quantum Chem. 116, 346–356.

    Article  CAS  Google Scholar 

  44. B.-R. Wang, H.-Y. Han, and Z. Xie (1062). Structural and magnetic properties of small NinMn clusters. J. Mol. Struct. 2014, 174–178.

    Google Scholar 

  45. M. Boulbazine, A. Boudjahem, and M. Bettahar (2017). Stabilities, electronic and magnetic properties of Cu-doped nickel clusters: a DFT investigation. Mol. Phys. 115, 2495–2507.

    Article  CAS  Google Scholar 

  46. W. Bouderbala and A. Boudjahem (2014). First-principles calculations of small PdnAlm (n + m ≤ 6) clusters. Physica B 454, 217–223.

    Article  CAS  Google Scholar 

  47. A. Boudjahem, M. Boulbazine, and M. Chettibi (2018). Electronic, magnetic properties of Os-doped rhodium clusters: a theoretical study. J. Supercond. Nov. Magn.. https://doi.org/10.1007/s10948-018-4579-x.

    Article  Google Scholar 

  48. C. Yu, J. Fu, M. Muzzio, T. Shen, D. Su, J. Zhu, and S. Sun (2017). CuNi nanoparticles assembled on grapheme for catalytic methanolysis of ammonia borane and hydrogenation of nitro/nitrile compounds. Chem. Mater. 29, 1413–1418.

    Article  CAS  Google Scholar 

  49. A. Boudjahem, W. Bouderbala, and M. Bettahar (2011). Benzene hydrogenation over Ni–Cu/SiO2 catalysts prepared by aqueous hydrazine reduction. Fuel Process. Technol. 92, 500–506.

    Article  CAS  Google Scholar 

  50. A. Boudjahem, M. Chettibi, S. Monteverdi, and M. Bettahar (2009). Acetylene hydrogenation over Ni–Cu nanoparticles supported on silica prepared by aqueous hydrazine reduction. J. Nanosci. Nanotechnol. 9, 3546–3554.

    Article  CAS  PubMed  Google Scholar 

  51. T. Lu and F. W. Chen (2012). Multiwfn: a multifunctional wave function analyzer. J. Comput. Chem. 33, 580–592.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Ghani Boudjahem.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulbazine, M., Boudjahem, AG. Stability, Electronic and Magnetic Properties of Mn-Doped Copper Clusters: A Meta-GGA Functional Investigation. J Clust Sci 30, 31–44 (2019). https://doi.org/10.1007/s10876-018-1456-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1456-5

Keywords

Navigation