Silver Nanoparticles Synthesized Using Eysenhardtia polystachya and Assessment of the Inhibition of Glycation in Multiple Stages In Vitro and in the Zebrafish Model

Abstract

The aim was to investigate the inhibitory activities on AGE formation by testing silver nanoparticles fabricated using a methanol extract of Eysenhardtia polystachya (EP–AgNPs) and characterized using various physicochemical techniques. The in vitro glucose-albumin assay was used, and cell viability was carried out in RAW264.7 cells. For In vivo testing, we induced diabetes in adult zebrafish with by providing a high blood glucose concentration. EP–AgNPs showed an absorption peak at 413 nm in the UV–Vis spectrum, indicating surface plasmon resonance of the nanoparticles. TEM indicated that most of the particles were spherical, with a diameter of 10–12 nm, a polydispersity index of 0.197, and a zeta potential of − 32.25 mV, suggesting high stability of the nanoparticles. The biocompatible nature of the EP–AgNPs was demonstrated in RAW264.7 cells. EP–AgNPs markedly reduced the formation of AGEs, Amadorin-product/fructosamine, Nε-(carboxymethyl)-lysine, amyloid cross β-structure, and protein carbonyl content in BSA-glucose system and increased total thiol-group after 4 weeks in hyperglycemic zebrafish, EP–AgNPs provided a protective effect against glycation. Data suggest that the inhibitory activity of EP–AgNPs on formation of AGEs is developed through a multiple-stage mechanism of glycation. EP–AgNPs could therefore be an antiglycation agent for prevention diabetic complications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    S. Yamagishi and T. Matsu (2010). Oxid. Med. Cell. Longev. 3, 101.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    J. R. Baker, P. A. Metcalf, R. N. Johnson, D. Newman, and P. Rietz (1985). Clin. Chem. 31, 1550.

    CAS  PubMed  Google Scholar 

  3. 3.

    S. Y. Goh and M. E. Cooper (2008). J. Clin. Endocrinol. Metab. 93, 1143.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    M. Aramsri, S. Weerachat, C. B. Chan, and A. Sirichai (2013). Molecules 18, 6439. https://doi.org/10.3390/molecules18066439.

    CAS  Article  Google Scholar 

  5. 5.

    T. Nakagawa, T. Yokozawa, K. Terasawa, S. Shu, and L. R. Juneja (2002). J. Agric. Food Chem. 50, 2418.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    T. Kayalvizhi, S. Ravikumar, and P. Venkatachalam (2016). J. Environ. Eng. 142, C4016002.

    Article  CAS  Google Scholar 

  7. 7.

    S. Marin and G. M. Lemnaru (2015). Curr. Top. Med. Chem. 15, 1596.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    D. F. Emerich and C. G. Thanos (2006). Biomol. Eng. 23, 171.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    S. Gurunathan, J. Raman, S. N. Abd Malek, P. A. John, and S. Vikineswary (2013). Int. J. Nanomed. 8, 4399.

    Google Scholar 

  10. 10.

    J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, and H. J. Lee (2007). Nanomed. Nanotechnol. 3, 95.

    CAS  Article  Google Scholar 

  11. 11.

    A. Ledezma, J. Romero, M. Hernández, I. Moggio, E. Arias, and E. Padron (2014). Superficies Vacio. 27, 133.

    CAS  Google Scholar 

  12. 12.

    J. Sanchez-Rodriguez, E. Vacas-Cordoba, R. Gomez, F. J. De La Mata, and M. A. Muñoz-Fernández (2015). Antiviral Res. 113, 33.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    L. Al Shaal, R. Shegokar, and R. H. Müller (2011). Int. J. Pharm. 20, 133. https://doi.org/10.1016/j.ijpharm.2011.08.018.

    CAS  Article  Google Scholar 

  14. 14.

    S. Hua, E. Marks, J. Jennifer, and J. Simon (2015). Nanomed. Nanotechnol. Biol. Med.. https://doi.org/10.1016/j.nano.2015.02.018.

    Article  Google Scholar 

  15. 15.

    T. S. Mohamed Saleem and R. Pradeep Kumar (2010). J. Exp. Pharmacol. 29, 32.

    Google Scholar 

  16. 16.

    M. Teimouri, F. Khosravi-Nejad, F. Attar, A. Akbar Saboury, and M. Falahati (2018). J. Clean. Prod. 184, 740. https://doi.org/10.1016/j.jclepro.2018.02.268.

    CAS  Article  Google Scholar 

  17. 17.

    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1. https://doi.org/10.1007/s10876-017-1165-5.

    CAS  Article  Google Scholar 

  18. 18.

    G. Benelli (2016). Enzyme Microb. Technol. 95, 58.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    V. Sujitha, K. Murugan, and M. Paulpandi (2015). Parasitol. Res. 114, 3315. https://doi.org/10.1007/s00436-015-4556-2.

    Article  PubMed  Google Scholar 

  20. 20.

    G. D. Saratale, R. G. Saratale, G. Benelli, G. Kumar, A. Pugazhendhi, D. Kim, and H. Shin (2017). J. Clust. Sci. 28, 1709. https://doi.org/10.1007/s10876-017-1179-z.

    CAS  Article  Google Scholar 

  21. 21.

    P. Anbazhagan, K. Murugan, A. Jaganathan, V. Sujitha, C. M. Samidoss, S. Jayashanthani, P. Amuthavalli, A. Higuchi, S. Kumar, H. Wei, M. Nicoletti, A. Canale, and G. Benelli (2017). J. Clust. Sci. 28, 91. https://doi.org/10.1007/s10876-016-1047-2.

    CAS  Article  Google Scholar 

  22. 22.

    G. R. Saratale, H. S. Shin, G. Kumar, G. Benelli, D. S. Kim, and G. D. Saratale (2018). Artif. Cells Nanomed. Biotechnol. 46, 211. https://doi.org/10.1080/21691401.2017.1337031.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    R. M. G. Perez, R. Vargas, G. S. Perez, and S. Zavala (1998). Phytoter. Res. 12, 144.

    Article  Google Scholar 

  24. 24.

    D. T. Burns, B. G. Dalgarno, P. Ggargan, and J. Grimshaw (1984). Phytochemistry 3, 167.

    Article  Google Scholar 

  25. 25.

    L. Alvarez, M. Y. Rios, C. Esquivel, M. I. Chavez, G. Delgado, and G. Aguilar (1999). J. Nat. Prod. 61, 767.

    Article  Google Scholar 

  26. 26.

    R. M. G. Perez and E. G. Baez (2014). Pharmcog. Mag. 10, S404.

    Article  Google Scholar 

  27. 27.

    R. M. G. Perez, A. H. G. Campoy, A. M. Ramirez (2016). Oxid. Med. Cell. Longev. Article ID 9156510, 13 p. https://doi.org/10.1155/2016/9156510.

    Article  CAS  Google Scholar 

  28. 28.

    R. M. G. Perez, A. H. G. Campoy, and J. M. M. Flores (2017). NESSA J. Pharm. Pharmacol. 1, 3.

    Google Scholar 

  29. 29.

    M. C. Fishman (1999). Proc. Natl. Acad. Sci. USA 96, 10554.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    L. Segalat (2007). ACS Chem. Biol. 2, 231.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    C. Parng, W. L. Seng, C. Semino, and P. McGrath (2002). Assay Drug Dev. Technol. 1, 41.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    S. G. Vancott, Y. Beckham, and G. M. Kelly (1997). Biochem. Cell. Biol. 75, 479.

    Article  Google Scholar 

  33. 33.

    S. Amnon and P. Gut (2015). Cell. Mol. Life Sci. 72, 2249. https://doi.org/10.1007/s00018-014-1816-8.

    CAS  Article  Google Scholar 

  34. 34.

    D. Suvakanta, N. M. Padala, N. Lilakanta, and C. Prasanta (2010). Acta Poloniae Pharma-Drug Res. 67, 217.

    Google Scholar 

  35. 35.

    C. Berkland, M. J. Kipper, B. Narasimhan, K. K. Kim, and D. W. Pac (2004). J. Controll. Rel. 94, 129.

    CAS  Article  Google Scholar 

  36. 36.

    T. Higuchi (1963). J. Pharm. Sci. 52, 1145.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    R. W. Korsmeyer and N. Peppas in T. J. Roseman, S. Z. Mansdorf, and D. Marcel (eds.), A controlled release delivery systems (Inc., Nueva, York, 1983).

    Google Scholar 

  38. 38.

    P. Ritger and N. Peppas (1987). J. Control Rel. 5, 23.

    CAS  Article  Google Scholar 

  39. 39.

    L. Rong-Rong, H. Hai-Feng, B. Fan, L. Ying, W. Chun-Zhen, H. Xiao-Xing, X. Li-Ping, and H. You-Jia (2016). Chin. J. Nat. Med. 14, 0527.

    Google Scholar 

  40. 40.

    G. L. Pedroso, T. O. Hammes, T. D. Escobar, L. B. Fracasso, L. F. Forgiarini, and T. R. Dailveira (2012). J. Vis. Exp. 26, e3865. https://doi.org/10.3791/3865.

    CAS  Article  Google Scholar 

  41. 41.

    J. Chompoo, A. Upadhayay, W. Kishimoto, T. Makise, and S. Tawata (2011). Food Chem. 129, 709.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    A. Ardestani and R. Yazdanparast (2007). Int. J. Biol. Macromol. 41, 572.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    R. L. Levine, D. Garland, C. N. Oliver, A. Amici, and I. Climent (1990). Methods Enzymol. 186, 464.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    G. L. Ellman (1959). Arch. Biochem. Biophys. 82, 70.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    R. Tupe and V. Agte (2010). Brit. J. Nutr. 103, 370.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    W. Klunk, R. F. Jacob, and R. P. Mason (1999). Methods Enzymol. 309, 285.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    I. Sadowska-BartoszI, S. Galiniak, and G. Bartosz (2014). Molecules 19, 4880.

    Article  CAS  Google Scholar 

  48. 48.

    O. Velgosova and A. Mrazikova (2017). AIP Conf. Proc. 1918, 020004.

    Article  CAS  Google Scholar 

  49. 49.

    C. Dipankar and S. Murugan (2012). Colloid Surf. B Biointerfaces 98, 112.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    V. K. Preethi, L. Chitra, G. Kavitha, R. Vijayan, S. Penislusshiyan, V. Sudha, S. Palanivel, and P. Thayumanavan (2017). Artif. Cells Nanomed. Biotechnol.. https://doi.org/10.1080/21691401.2017.1374283.

    Article  Google Scholar 

  51. 51.

    B. Menagen, P. Rami, A. David (2017). Sci. Rep. 7, 4161. http://www.nature.com/articles/s41598-017-03195-w.

  52. 52.

    S. P. Patil and S. T. Kumbhar (2017). Biochem. Biophys. Rep. 10, 76.

    Google Scholar 

  53. 53.

    T. J. Maybry, K. R. Markham, and M. B. Thomas The Ultraviolet Spectra of Flavones and Flavonols. The Systematic Identification of Flavonoids (Springer, Berlin, 1970), pp. 41–164.

    Google Scholar 

  54. 54.

    S. Rout and R. Banerjee (2007). Bioresour. Technol. 98, 3159.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    B. C. Nelson, ME, Walker ML, Riley (2016). Antioxidants. 5, 15. http://www.mdpi.com/2076-3921/5/2/15.

    Article  CAS  PubMed Central  Google Scholar 

  56. 56.

    K. Logaranjan, A. J. Raiza, S. C. Gopinath, Y. Chen, and K. Pandian (2016). Nanoscale Res. Letts. 11, 520. https://doi.org/10.1186/s11671-016-1725-x.

    CAS  Article  Google Scholar 

  57. 57.

    K. Jyoti, B. Mamta, S. Ajeet (2016). J. Radiat. Res. Appl. Sci. 9, 217. http://linkinghub.elsevier.com/retrieve/pii/S1687850715001132.

  58. 58.

    G. Ferreira, A. R. Hernandez-Martinez, H. P. Gustavo Molina, M. Cruz-Soto, G. Luna, and M. Estevez (2015). Mat. Sci. Eng. C 57, 49.

    CAS  Article  Google Scholar 

  59. 59.

    X. Huang, L. Li, T. Liu, N. Hao, H. Liu, D. Chen, and F. Tang (2011). ACS Nano. 5, 5390.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    S. Ashe, D. Nayak, M. Kumari, and B. Nayak (2016). ACS Appl. Mater. Interfaces 8, 30005.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    M. Ansari, M. Habibi-Rezaei, S. Salahshour-Kordestani, A. A. Movahedi, and N. Poursasan (2015). Protein Pept. Lett. 22, 594.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    S. Yu, W. Zhang, W. Liu, W. Zhu, R. Guo, Y. Wang, D. Zhang, and J. Wang (2015). Nanotechnology 26, 145703. https://doi.org/10.1088/0957-4484/26/14/145703.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    F. Kazemi, A. Divsalar, and A. A. Saboury (2018). Int. J. Biol. Macromol. 109, 1329. https://doi.org/10.1016/j.ijbiomac.2017.11.143.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    V. V. Mossine, M. Linetsky, and G. V. Glinsky (1999). Chem. Res. Toxicol. 12, 230–236.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    D. L. Price, P. M. Rhett, S. R. Thorpe, and J. W. Baynes (2001). J. Biol. Chem. 276, 48967.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    B. Bouna, L. M. Kron-Batenburg, and P. Wu (2003). J. Biol. Chem. 278, 171.

    Google Scholar 

  67. 67.

    V. P. Singh, A. Bali, N. Singh, and A. S. Jaggi (2014). Korean J. Physiol. Pharmacol. 18, 1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rosa Martha Perez Gutierrez.

Ethics declarations

Conflict of interest

All of the authors have declared that no competing interests exist.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, R.M.P., Jeronimo, F.F.M., Campoy, A.H.G. et al. Silver Nanoparticles Synthesized Using Eysenhardtia polystachya and Assessment of the Inhibition of Glycation in Multiple Stages In Vitro and in the Zebrafish Model. J Clust Sci 29, 1291–1303 (2018). https://doi.org/10.1007/s10876-018-1448-5

Download citation

Keywords

  • Eysenhardtia polystachya
  • Green synthesis
  • Antiglycation activity
  • Diabetes
  • Danio rerio