Skip to main content
Log in

Decay of Hexaniobate Complexes of Mn(IV) and Pt(IV) in Alkaline Solutions: Some New Hexaniobate Salts

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This research summarizes the behavior [Mn(Nb6O19)2]12− and [(Nb6O19)2(Pt(OH)2)2]12− in basic solutions at pH 12. After heating of [Mn(Nb6O19)2]12− for 20 min at 60° in the presence of NaOH new very unstable phase Na8[Nb6O19]·25H2O (1) was obtained. Gentle (60 °C) heating of a solution of [(Nb6O19)2(Pt(OH)2)2]12− for 10 min in the presence of NaOH causes rearrangement into [Pt(Nb6O19)2]12−, which was isolated as Na12[Pt(Nb6O19)2]·52H2O (2). Longer heating yields white insoluble amorphous precipitate and crystals of a new hexaniobate phase K5Na3[Nb6O19]·9H2O (3). Crystal structures of the products and their structural relationship with known analogs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. K. Kinnan, W. R. Creasy, L. B. Fullmer, H. L. Schreuder-Gibson, and M. Nyman (2014). Eur. J. Inorg. Chem. 2014 2361–2367.

  2. W. Guo, H. Lv, K. P. Sullivan, W. O. Gordon, A. Balboa, G. W. Wagner, D. G. Musaev, J. Bacsa, and C. L. Hill (2016). Angew. Chemie Int. Ed. 55, 7403–7407.

    Article  CAS  Google Scholar 

  3. Q. Wang, R. C. Chapleski, A. M. Plonka, W. O. Gordon, W. Guo, T.-D. Nguyen-Phan, C. H. Sharp, N. S. Marinkovic, S. D. Senanayake, J. R. Morris, C. L. Hill, D. Troya, and A. I. Frenkel (2017). Sci. Rep. 7, 773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P. Huang, C. Qin, Z.-M. Su, Y. Xing, X.-L. Wang, K.-Z. Shao, Y.-Q. Lan, and E.-B. Wang (2012). J. Am. Chem. Soc. 134, 14004–14010.

    Article  CAS  PubMed  Google Scholar 

  5. T. Kitano, T. Shishido, K. Teramura, and T. Tanaka (2014). Catal. Today 226, 97–102.

    Article  CAS  Google Scholar 

  6. N. E. Thornburg, S. L. Nauert, A. B. Thompson, and J. M. Notestein (2016). ACS Catal. 6, 6124–6134.

    Article  CAS  Google Scholar 

  7. P. Carniti, A. Gervasini, and M. Marzo (2008). J. Phys. Chem. C 112, 14064–14074.

    Article  CAS  Google Scholar 

  8. J. Xi, Q. Xia, Y. Shao, D. Ding, P. Yang, X. Liu, G. Lu, and Y. Wang (2016). Appl. Catal. B Environ. 181, 699–706.

    Article  CAS  Google Scholar 

  9. R. Tesser, R. Vitiello, G. Carotenuto, C. Garcia Sancho, A. Vergara, P. J. Maireles, C. Torres, C. Li, and M. Di Serio (2015). Catal. Sustain Energy 1, 33–42.

    Google Scholar 

  10. A. A. Kiss, A. C. Dimian, and G. Rothenberg (2008). Energy Fuels 22, 598–604.

    Article  CAS  Google Scholar 

  11. C. Lamy, S. Rousseau, E. Belgsir, C. Coutanceau, and J.-M. Léger (2004). Electrochim. Acta 49, 3901–3908.

    Article  CAS  Google Scholar 

  12. P. Justin, P. Hari Krishna Charan, and G. Ranga Rao (2010). Appl. Catal. B Environ. 100, 510–515.

    Article  CAS  Google Scholar 

  13. X. Kong, D. Hu, P. Wen, T. Ishii, Y. Tanaka, and Q. Feng (2013). Dalton Trans. 42, 7699.

    Article  CAS  PubMed  Google Scholar 

  14. B. W. Dale and M. T. Pope (1967). Chem. Commun. 0, 792.

    CAS  Google Scholar 

  15. M. T. Pope and B. W. Dale (1968). Q. Rev. Chem. Soc. 22, 527.

    Article  CAS  Google Scholar 

  16. C. M. Flynn and G. D. Stucky (1969). Inorg. Chem. 8, 335–344.

    Article  CAS  Google Scholar 

  17. C. M. Flynn and O. D. Stucky (1969). Inorg. Chem. 8, 332–334.

    Article  CAS  Google Scholar 

  18. P. T. Ma, G. Chen, G. Wang, and J. P. Wang (2011). Russ. J. Coord. Chem. 37, 772–775.

    Article  CAS  Google Scholar 

  19. P. A. Abramov, C. Vicent, N. B. Kompankov, A. L. Gushchin, and M. N. Sokolov (2015). Chem. Commun. 51, 4021–4023.

    Article  CAS  Google Scholar 

  20. Z. Liang, D. Zhang, Q. Liu, P. Ma, J. Niu, and J. Wang (2015). Inorg. Chem. Commun. 54, 19–20.

    Article  CAS  Google Scholar 

  21. O. V. Shuvaeva, A. A. Zhdanov, T. E. Romanova, P. A. Abramov, and M. N. Sokolov (2017). Dalton Trans. 46, 3541–3546.

    Article  CAS  PubMed  Google Scholar 

  22. P. A. Abramov, M. M. Akhmetova, T. E. Romanova, A. S. Bogomyakov, M. V. Fedin, and M. N. Sokolov (2018). Inorg. Chim. Acta 473, 268–274.

    Article  CAS  Google Scholar 

  23. G. M. Sheldrick SADABS (University of Göttingen, Göttingen, 1996).

    Google Scholar 

  24. G. M. Sheldrick (2015). Acta Cryst. Sect. A Found. Adv. 71, 3–8.

    Article  CAS  Google Scholar 

  25. C. B. Hübschle, G. M. Sheldrick, and B. Dittrich (2011). J. Appl. Crystallogr. 44, 1281–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. R. Black, M. Nyman, and W. H. Casey (2006). J. Am. Chem. Soc. 128, 14712–14720.

    Article  CAS  PubMed  Google Scholar 

  27. W. G. Klemperer and K. A. Marek (2013). Eur. J. Inorg. Chem. 28, 1762–1771.

    Article  CAS  Google Scholar 

  28. C. J. Besecker, V. W. Day, W. G. Klemperer, and M. R. Thompson (1985). Inorg. Chem. 24, 44–50.

    Article  CAS  Google Scholar 

  29. M. Nyman (2011). Dalton Trans. 40, 8049–8058.

    Article  CAS  PubMed  Google Scholar 

  30. M. N. Jackson, M. K. Kamunde-Devonish, B. A. Hammann, L. A. Wills, L. B. Fullmer, S. E. Hayes, P. H.-Y. Cheong, W. H. Casey, M. Nyman, and D. W. Johnson (2015). Dalton Trans. 44, 16982–17006.

    Article  CAS  PubMed  Google Scholar 

  31. M. Nyman (2017). Coord. Chem. Rev. 352, 461–472.

    Article  CAS  Google Scholar 

  32. A. Goiffon, E. Philippot, and M. Maurin (1980). Rev. Chim. Min. 17, 466–476.

    CAS  Google Scholar 

  33. T. M. Anderson, M. A. Rodriguez, F. Bonhomme, J. N. Bixler, T. M. Alam, and M. Nyman (2007). Dalton Trans. 9226, 4517–4522.

    Article  CAS  Google Scholar 

  34. P. A. Abramov and M. N. Sokolov (2017). J. Struct. Chem. 58, 1411–1417.

    Article  CAS  Google Scholar 

  35. G. K. L. Goh, F. F. Lange, S. M. Haile, and C. G. Levi (2003). J. Mater. Res. 18, 338–345.

    Article  CAS  Google Scholar 

  36. C. Liu, H. Xu, H. Li, L. Liu, L. Xu, and Z. Ye (2011). Korean J. Chem. Eng. 28, 1126–1132.

    Article  CAS  Google Scholar 

  37. P. A. Abramov, A. M. Abramova, E. V. Peresypkina, A. L. Gushchin, S. A. Adonin, and M. N. Sokolov (2011). J. Struct. Chem. 52, 1012–1017.

    Article  CAS  Google Scholar 

  38. S. N. Britvin, O. I. Siidra, A. Lotnyk, L. Kienle, S. V. Krivovichev, and W. Depmeier (2012). Inorg. Chem. Commun. 25, 18–20.

    Article  CAS  Google Scholar 

  39. P. A. Abramov, T. P. Zemerova, and M. N. Sokolov (2017). J. Clust. Sci. 28, 725–734.

    Article  CAS  Google Scholar 

  40. A. V. Besserguenev, M. H. Dickman, and M. T. Pope (2001). Inorg. Chem. 40, 2582–2586.

    Article  CAS  PubMed  Google Scholar 

  41. J.-P. Wang, P.-T. Ma, J.-Y. Niu, and Z. Krist (2006). N. Cryst. Struct. 221, 235–237.

    CAS  Google Scholar 

  42. D. Vasilchenko, S. Berdugin, S. Tkachev, I. Baidina, G. Romanenko, O. Gerasko, and S. Korenev (2015). Inorg. Chem. 54, 4644–4651.

    Article  CAS  PubMed  Google Scholar 

  43. P. Klonowski, J. C. Goloboy, F. J. Uribe-Romo, F. Sun, L. Zhu, F. Gándara, C. Wills, R. J. Errington, O. M. Yaghi, and W. G. Klemperer (2014). Inorg. Chem. 53, 13239–13246.

    Article  CAS  PubMed  Google Scholar 

  44. U. Lee, H.-C. Joo, K.-M. Park, S. S. Mal, U. Kortz, B. Keita, and L. Nadjo (2008). Angew. Chemie Int. Ed. 47, 793–796.

    Article  CAS  Google Scholar 

  45. S. Dugar, N. V. Izarova, S. S. Mal, R. Fu, H.-C. Joo, U. Lee, N. S. Dalal, M. T. Pope, G. B. Jameson, and U. Kortz (2016). N. J. Chem. 40, 923–927.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The NIIC team thanks Federal Agency for Scientific Organizations for funding. This work was done within the framework of implementation of a project part of the state task for 2017–2019 No. 10.1448.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel A. Abramov.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmakova, A.A., Shiriyazdanov, R.R., Karimova, A.R. et al. Decay of Hexaniobate Complexes of Mn(IV) and Pt(IV) in Alkaline Solutions: Some New Hexaniobate Salts. J Clust Sci 29, 1201–1207 (2018). https://doi.org/10.1007/s10876-018-1439-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1439-6

Keywords

Navigation