Journal of Cluster Science

, Volume 29, Issue 6, pp 989–1002 | Cite as

Purification and Utilization of Gum from Terminalia Catappa L. for Synthesis of Curcumin Loaded Nanoparticle and Its In Vitro Bioactivity Studies

  • Antony V. SamrotEmail author
  • B. Suvedhaa
  • Chamarthy Sai Sahithya
  • A. Madankumar
Original Paper


In this study, polysaccharide of Terminalia catappa L. was extracted and characterized using UV–Vis spectroscopy and FTIR spectroscopy. The polysaccharide was tested for its antibacterial activity, swarming motility, antibiofilm activity, anticancer activity and antioxidant activity. Further, the polysaccharide was subjected for carboxymethylation and chelated using Tri Sodium Tri Meta phosphate to form nanocarriers. The nanocarriers were loaded with curcumin and were characterized using FTIR, SEM, EDAX, TEM and AFM. The curcumin nanocarriers were evaluated for its drug encapsulation efficiency, drug release, invitro anticancer activity and also subjected for cellular uptake studies. The polysaccharide was found to be producing a stable and non hemotoxic nanocarrier, which could encapsulate drug and release drug efficiently.


Almond gum polysaccharide (AGP) Carboxymethylated AGP (CMAG) Nanocarrier Curcumin Cellular uptake 


Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest.


  1. 1.
    S. Bhaskar, F. Tian, T. Stoeger, W. Kreyling, J. M. de la Fuente, V. Grazú, P. Borm, G. Estrada, V. Ntziachristos, and D. Razansky (2010). Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging. PartFibreToxicol. 7, 3.Google Scholar
  2. 2.
    O. Flores, S. Santra, C. Kaittanis, R. Bassiouni, A. S. Khaled, A. R. Khaled, J. Grimm, and J. M. Perez (2017). PSMA-targeted theranostic nanocarrier for prostate cancer. Theranostics. 7, (9), 2477–2494.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. V. Deimling, N. Waldoefner, R. Felix, and A. Jordan (2007). Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of afeasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81, (1), 53–60.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    G. Benelli, C.M. Lukehart (2017). Special Issue: Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci. 28, 1–2. CrossRefGoogle Scholar
  5. 5.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci. 28, 3–10.CrossRefGoogle Scholar
  6. 6.
    G. Benelli (2016). Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microb Technol. 95, 58–68.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    S. Parveen, R. Misra, and S. K. Sahoo (2012). Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8, (2) 147,CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    J. Clark, E. M. Singer, D. R. Korns, S. S. Smith (2004). Design and analysis of nanoscale bioassemblies. Biotechniques. 36, (6), 992–6, 998–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    J. A. Champion, Y. K. Katare, and S. Mitragotri (2007). Making polymeric micro- and nanoparticles of complex shapes. Proceedings of the National Academy of Sciences of the United States of America. 104, (29), 11901–11904.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    C. MisDing and Z. Li (2017). A review of drug release mechanisms from nanocarrier systems. Materials Science & Engineering. C Mater Biol Appl. 76, 1440–1453.CrossRefGoogle Scholar
  11. 11.
    J. Huang, Y. Xue, N. Cai, H. Zhang, K. Wen, X. Luo, S. Long, and F. Yu (2015). Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulphide crosslinking. Mater Sci Eng C Mater Biol Appl. 46, 41–51.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    V. P. Torchilin (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 61, (19–20), 2549–2559.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    A. R. Nicholas, M. J. Scott, N. I. Kennedy, and M. N. Jones (2000). Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. BiochimBiophys Acta. 1463, (1), 167–178.Google Scholar
  14. 14.
    K. Thanzami, C. Malsawmtluangi, H. Lalhlenmawia, T. V. Seelan, S. Palanisamy, R. Kandasamy, and L. Pachuau (2015). Characterization and in vitro antioxidant activity of AlbiziastipulataBoiv. gum exudates. Int J Biol Macromol. 80, 231–239.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    P. D. Choudhary, H. A. Pawar (2014). Recently Investigated Natural Gums and Mucilages as Pharmaceutical Excipients: An Overview. J Pharm. (ii), 1–9.CrossRefGoogle Scholar
  16. 16.
    D. Verbeken, S. Dierckx, and K. Dewettinck (2003). Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 63, (1), 10–21.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    F. Khorram, A. Ramezanian, and S. M. H. Hosseini (2017). Shellac, gelatin and Persian gum as alternative coating for orange fruit. Sci Hort. 225, 22–28.CrossRefGoogle Scholar
  18. 18.
    I. Khan, K. Saeed, I. Khan (2017). Nanoparticles: properties, applications and toxicities. Arab J Chem. In Press.
  19. 19.
    M. Hadian, S. M. H. Hosseini, A. Farahnaky, and G. Z. Mesbahi (2017). Optimization of functional nanoparticles formation in associative mixture of water-soluble portion of Farsi gum and beta-lactoglobulin. Int J BiolMacromol. 102, 1297–1303.CrossRefGoogle Scholar
  20. 20.
    R. Sharma and V. Rana (2017). Effect of carboxymethylation on rheological and drug release characteristics of Terminalia catappa gum. CarbohydrPolym. 175, 728–738.Google Scholar
  21. 21.
    Abhishek Rimpy and M. Ahuja (2017). Evaluation of carboxymethyl moringa gum as nanometric carrier. CarbohydrPolym. 174, 896–903.Google Scholar
  22. 22.
    S. Ghayempour, M. Montazer, and M. Mahmoudi Rad (2016). Encapsulation of Aloe vera extract into natural Tragacanth Gum as a novel green wound healing product. Int J Biol Macromol. 93, 344–349.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    F. F. Simas-Tosin, R. R. Barraza, D. Maria-Ferreira, M. F. Werner, C. H. Baggio, R. Wagner, F. R. Smiderle, E. R. Carbonero, G. L. Sassaki, M. Iacomini, and P. A. Gorin (2014). Glucuronoarabinoxylan from coconut palm gum exudate: chemical structure and gastroprotective effect. Carbohydr Polym. 107, 65–71.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    V. K. Sharma and B. Mazumdar (2013). Feasibility and characterization of gummy exudate of Cochlospermum religiosum as pharmaceutical excipient. Ind Crops Prod. 50, 776–786.CrossRefGoogle Scholar
  25. 25.
    E. K. Selvi, J. M. Kumar, and R. B. Sasidhar (2017). Anti-proliferative activity of Gum kondagogu (Cochlospermum gossypium)-gold nanoparticle constructs on B16F10 melanoma cells: An in vitro model. Bioact Carbohydr Diet Fibre. 11, 38–47.CrossRefGoogle Scholar
  26. 26.
    A. Rezaei, H. Tavanai, and A. Nasirpour (2016). Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin. Int J Biol Macromol. 91, 536–543.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    F. Bouaziz, M. Ben Romdhane, C. BoissetHelbert, L. Buon, F. Bhiri, S. Bardaa, D. Driss, M. Koubaa, A. Fakhfakh, Z. Sahnoun, F. Kallel, N. Zghal, and S. EllouzChaabouni (2014). Healing efficiency of oligosaccharides generated from almond gum (Prunus amygdalus) on dermal wounds of adult rats. J Tissue Viability. 23, (3), 98–108.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    F. Bouaziz, M. Koubaa, K. Ben Jeddou, F. Kallel, C. BoissetHelbert, A. Khelfa, R. EllouzGhorbel, S. EllouzChaabouni. Water-soluble polysaccharides and hemicelluloses from almond gum: Functional and prebiotic properties. Int J Biolmacromol. 93, 359–368.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    F. Bouaziza, M. Koubaa, M. Neifar, S. Z. Ellouzi, S. Besbes, F. Chaaria, A. Kamoune, M. Chaabounie, S. E. Chaabouni, and R. E. Ghorbela (2015). Feasibility of using almond gum as coating agent to improve the quality of fried potato chips: evaluation of sensorialproperties. LWT—Food Sci Technol. 65, 800–807.CrossRefGoogle Scholar
  30. 30.
    N. Mahfoudhi, M. Sessa, M. Chouaibi, G. Ferrari, F. Donsì, and S. Hamdi (2014). Assessment of emulsifying ability of almond gum in comparison with gum arabic using response surface methodology. Food Hydrocolls. 37, 49–59.CrossRefGoogle Scholar
  31. 31.
    F. Bouaziz, C. B. Helbertm, M. B. Romdhane, M. Koubaa, F. Bhiri, F. Kallel, F. Chaari, D. Driss, L. Buon, and S. E. Chaabouni (2014). Structural data and biological properties of almond gum oligosaccharide: application to beef meat preservation. Int J Biolmacromol. 72, 472–479.CrossRefGoogle Scholar
  32. 32.
    S. A. Hussain and V. Jaisankar (2017). An eco-friendly synthesis, characterisation and antibacterial applications of novel almond gum–poly(acrylamide) based hydrogel silver nanocomposite. Polym Test. 62, 154–161.CrossRefGoogle Scholar
  33. 33.
    G. Dodi, A. Pala, E. Barbu, D. Peptanariu, D. Hritcu, M. I. Popa, and B. I. Tamba (2016). Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in vitro investigations. Mater Sci Eng C Mater Biol Appl. 63, 628–636.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    D. G. Ha, S. L. Kuchma, and G. A. O’Toole (2014). Plate-based assay for swarming motility in Pseudomonas aeruginosa. Methods Mol Biol. 1149, 67–72.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    G. Rajivgandhi, R. Vijayan, M. Maruthupandy, B. Vaseeharan, N. Manoharan (2018). Antibiofilm effect of Nocardiopsis sp. GRG 1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs. Microb Pathog. 4010 (18), 30018–4.Google Scholar
  36. 36.
    I. F. Benzie and J. J. Strain (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 239, (1), 70–76.CrossRefPubMedGoogle Scholar
  37. 37.
    M. Maizura, A. Aminah, and W. M. Wan Aida (2001). Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. Int Food Res J. 18, 529–534.Google Scholar
  38. 38.
    M. R. Saha, S. M. R. Hasan, R. Akter, M. M. Hossain, M. S. Alam, M. A. Alam, M. E. H. Mazumder. In vitro free radical scavenging activity of methanol extract of the leaves of Mimusopselengilinn. J. Bangl. Vet. Med. 6 (2), 197–202.Google Scholar
  39. 39.
    A. Anitha, V. G. Deepagan, V. V. D. Rani, D. Menon, S. V. Nair, and R. Jayakumar (2011). Preparation, characterization, invitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr polym. 84, 1158–1164.CrossRefGoogle Scholar
  40. 40.
    N. S. Rejinold, M. Muthunarayanan, V. V. Divyarani, P. R. Sreerekha, K. P. Chennazhi, S. V. Nair, H. Tamura, and R. Jayakumar (2011). Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci. 360, (1), 39–51.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    G. Dodi, D. Hritcu, and I. M. Popa (2011). Carboxymethylation of guar gum: synthesis and characterization. Cellulose Chem Technol. 45, (3), 171–176.Google Scholar
  42. 42.
    A. V. Samrot, T. Jahnavi, Akansha, S. Padmanaban, S. A. Philip, U. Burman, and A. M. Rabel (2016). Chelators influenced synthesis of chitosan- carboxymethyl cellulose micro particles for controlled drug delivery. Appl Nano Sci. 6, 1219–1231.CrossRefGoogle Scholar
  43. 43.
    A. V. Samrot, Ujjala Burman, Sheryl Ann Philip, N. Shobana, and Kumar Chandrasekaran (2018). Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inform Med Unlocked. 10, 159–182.CrossRefGoogle Scholar
  44. 44.
    J. Gopal, S. Chun, V. Anthonydasan, S. Jung, B. N. Mwang’ombe, M. Muthu, and I. Sivanesan (2018). Assays evaluating antimicrobial activity of nanoparticles: a myth buster. J Clust Sci. 29, (2), 207–213.CrossRefGoogle Scholar
  45. 45.
    A. Soriano, F. Marco, J. A. Martínez, E. Pisos, M. Almela, V. P. Dimova, D. Alamo, M. Ortega, J. Lopez, and J. Mensa (2008). Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 46, (2), 193–200.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    P. Udompornmongkol and B. H. Chiang (2015). Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. J Biomater Appl. 0, (0), 1–10.Google Scholar
  47. 47.
    T. Mahendran, P. A. Williams, G. O. Phillips, S. Al-Assaf, and T. C. Baldwin (2008). New insightsinto the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic. J Agric Food Chem. 56, (19), 9269–9276.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    A. Rezaei, A. Nasirpour, and H. Tavanai (2016). Fractionation and some physicochemical properties of almond gum (Amygdaluscomunis L.) exudates. Food Hydrocoll. 60, 461–469.CrossRefGoogle Scholar
  49. 49.
    F. Bouaziz, M. Koubaa, C. B. Helbert, F. Kallel, D. Driss, I. Kacem, R. Ghorbel, and S. E. Chaabouni (2015). Purification, structural data and biological properties of polysaccharide from Prunus amygdalus gum. Int J Food Sci Technol. 50, 578–584.CrossRefGoogle Scholar
  50. 50.
    V. E. Ooi and F. Liu (2000). Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem. 7, (7), 715–729.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    E. Z. Gomaa (2013). In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels. Food Sci Biotechnol. 22, (2), 455–463.CrossRefGoogle Scholar
  52. 52.
    S. M. Bagheri, A. Abdian-Asi, M. T. Moghadam, M. Yadegari, A. Mirjalili, F. Zare-Mohazabieh, and H. Momeni (2017). Antitumor effect of Ferulaassafoetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice. J Ayurveda Integr Med. 8, (3), 152–158.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    G. Mhinzi, L. Mghweno, and J. Buchweishaija (2008). Intra-species variation of the properties of gum exudates from two Acacia species of the series Gummiferae. Food Chem. 107, 1407–1412.CrossRefGoogle Scholar
  54. 54.
    H. Pawar, M. Karde, N. Mundle, P. Jadhav, and K. Mehra (2014). Phytochemical evaluation and curcumin content determination of turmeric rhizomes collected from Bhandara district of Maharashtra (India). Med chem. 4, 588–591.CrossRefGoogle Scholar
  55. 55.
    D. Griffith, W. Bernt, P. Hole, J. Smith, A. Malloy, B. Carr (2011). Zetapotential measurement of nanoparticles by nanoparticle tracking analysis. NSTI-Nanotech. 1.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Antony V. Samrot
    • 1
    Email author
  • B. Suvedhaa
    • 1
  • Chamarthy Sai Sahithya
    • 1
  • A. Madankumar
    • 2
  1. 1.Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.Molecular and Nanomedicine Research UnitSathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations