Advertisement

Synthesis, Crystal Structure, and Properties of the Novel 2D Cd Coordination Polymer Based on Cd4 Cluster Chains

  • Ling-Yan Zhao
  • Lei Feng
  • Xiao-Chen Deng
  • Li-Wei Liu
  • Li Ren
Original Paper

Abstract

The title complex Cd/4-(phosphonomethyl) benzoic acid 4-HOOCC6H14CH2PO3(H3BCP) with 1,10-phenanthroline has been hydrothermally synthesized directly as [Cd3(BCP)2(phen)]·H2O 1 (phen = 1,10-phenanthroline). The crystal structure was determined by single-crystal X-ray diffraction with the following data: triclinic P-1. The complex is a two-dimensional layer structure. Interestingly, the one-dimensional cluster chain is composed of the novel repeated La4 cluster units connected by two Cd3 ions. The adjacent cluster chains link to be 2D layer structure by the coordination interaction of oxygen atoms of the carboxyl with the Cd3 ions of the adjacent chains. It is worthy of mentioning that IR, photo-luminescent and solid UV–Vis spectrum are employed in order to explore the structural characteristics.

Keywords

Cd/4-(phosphonomethyl) benzoic acid complex La4 cluster unit IR spectrum 

Notes

Acknowledgements

The project was supported by Scientific Research Fund of Hebei Provincial Education Department (QN2018051).

Supplementary material

10876_2018_1410_MOESM1_ESM.doc (134 kb)
Supplementary material 1 (DOC 134 kb)

References

  1. 1.
    S. S. Chen, L. Q. Sheng, Y. Zhao, Z. D. Liu, R. Qiao, and S. Yang (2016). Cryst. Growth Des. 16, 229.CrossRefGoogle Scholar
  2. 2.
    Y. B. Zhang, H. Furukawa, N. Ko, W. H. Nie, J. Park, and S. Okajima (2015). J. Am. Chem. Soc. 137, 2641.CrossRefGoogle Scholar
  3. 3.
    J. Pang, F. Jiang, M. Wu, D. Yuan, K. Zhou, and J. Qian (2014). Chem. Commun. 50, 2834.CrossRefGoogle Scholar
  4. 4.
    A. Bhunia, S. Dey, M. Bous, and C. Zhang (2015). Chem. Commun. 51, 484.CrossRefGoogle Scholar
  5. 5.
    S. Kitagawa, R. Kitaura, and S. Noro (2004). Angew. Chem. Int. Ed. 43, 2334.CrossRefGoogle Scholar
  6. 6.
    M. Kariem, M. Yawer, M. Kumar, H. N. Sheikh, and P. Sood (2017). J. Solid State Chem. 255, 61.CrossRefGoogle Scholar
  7. 7.
    Y. Ning, L. Wang, G. P. Yang, Y. Wu, N. Bai, and W. Zhang (2016). Dalton Trans. 45, 12800.CrossRefGoogle Scholar
  8. 8.
    E. D. Bloch, W. L. Queen, M. R. Hudson, J. A. Mason, D. J. Xiao, and L. J. Murray (2016). Angew. Chem. Int. Ed. 55, 8605.CrossRefGoogle Scholar
  9. 9.
    Z. Q. Liu, Y. Zhao, Y. Deng, X. D. Zhang, Y. S. Kang, Q. Y. Lu, and W. Y. Sun (2017). Sens. Actuators B. Chem. 250, 179.CrossRefGoogle Scholar
  10. 10.
    Y. L. Li, Y. Zhao, P. Wang, Y. S. Kang, Q. Liu, X. D. Zhang, and W. Y. Sun (2016). Inorg. Chem. 55, 11821.CrossRefGoogle Scholar
  11. 11.
    M. R. Yoon and K. Kim (2012). Chem. Rev. 112, 1196.CrossRefGoogle Scholar
  12. 12.
    B. Chen, L. Wang, F. Zapata, G. Qian, and E. B. Lobkovsky (2008). J. Am. Chem. Soc. 130, 6718.CrossRefGoogle Scholar
  13. 13.
    S. D. Han, S. J. Liu, Q. L. Wang, X. H. Miao, T. L. Hu, and X. H. Bu (2015). Cryst. Growth Des. 15, 2253.CrossRefGoogle Scholar
  14. 14.
    B. Gil-Hernández, S. Savvin, G. Makhloufi, P. Núñez, C. Janiak, and J. Sanchiz (2015). Inorg. Chem. 54, 1597.CrossRefGoogle Scholar
  15. 15.
    L. J. Zhou, W. H. Deng, Y. L. Wang, S. G. Xu, G. Yin, and Q. Y. Liu (2016). Inorg. Chem. 55, 6271.CrossRefGoogle Scholar
  16. 16.
    J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp (2009). Chem. Soc. Rev. 38, 1450.CrossRefGoogle Scholar
  17. 17.
    K. Chen, Y. S. Kang, Y. Zhao, J. M. Yang, Y. Lu, and W. Y. Sun (2014). J. Am. Chem. Soc. 136, 16744.CrossRefGoogle Scholar
  18. 18.
    Y. Deng, Y. Zhao, P. Wang, Z. Y. Yao, X. D. Zhang, and W. Y. Sun (2017). Micropor. Mesopor. Mater. 241, 192.CrossRefGoogle Scholar
  19. 19.
    J. Kim, H. J. Yoon, S. Kim, K. Wang, T. Ishii, Y. R. Kim, and W. D. Jang (2009). J. Mater. Chem. 19, 4627.CrossRefGoogle Scholar
  20. 20.
    W. J. Rieter, K. M. Pott, K. M. L. Taylor, and W. Lin (2008). J. Am. Chem. Soc. 130, 11584.CrossRefGoogle Scholar
  21. 21.
    Q. Y. Li, G. W. Yang, X. Y. Tang, Y. S. Ma, F. Zhou, W. Liu, and J. Chen (2010). Inorg. Chem. Commun. 13, 254.CrossRefGoogle Scholar
  22. 22.
    Y. B. Lu, S. Jin, F. M. Jian, Y. R. Xie, and G. T. Luo (2014). J. Mol. Struct. 1061, 14.CrossRefGoogle Scholar
  23. 23.
    M. K. Bharty, S. Paswan, R. K. Dani, N. K. Singh, V. K. Sharma, and R. N. Kharwar (2017). J. Mol. Struct. 1130, 181.CrossRefGoogle Scholar
  24. 24.
    X. Zhang, P. Yang, L. Xu, X. H. Zhou, X. Xu, and H. J. Xu (2015). J. Coord. Chem. 68, 1238.CrossRefGoogle Scholar
  25. 25.
    S. B. Miao, C. Y. Xu, D. S. Deng, and B. M. Ji (2018). J. Clust. Sci..  https://doi.org/10.1007/s10876-018-1333-2.Google Scholar
  26. 26.
    L. L. Liang, W. G. Li, Y. Y. Sun, M. Li, X. Xu, T. Wu, and S. H. Xie (2018). J Clust Sci..  https://doi.org/10.1007/s10876-017-1321-y.Google Scholar
  27. 27.
    J. W. Shi, Q. G. Meng, C. C. Xue, Q. Y. Liu, and D. P. Zhang (2018). Transit. Met. Chem. 43, 45.CrossRefGoogle Scholar
  28. 28.
    Y. S. Xue, J. L. Lu, W. W. Cheng, J. Wei, and N. N. Chen (2018). Transit. Chem. Met..  https://doi.org/10.1007/s11243-017-0187-z.Google Scholar
  29. 29.
    X. P. Wang, L. L. Han, S. J. Lin, X. Y. Li, and K. Mei (2016). J. Coord. Chem. 69, 286.CrossRefGoogle Scholar
  30. 30.
    N. Ma, W. Y. Guo, H. H. Song, and H. T. Yu (2016). J. Solid State Chem. 233, 381.CrossRefGoogle Scholar
  31. 31.
    X. L. Cao, G. E. Xing, and Y. Zhang (2016). J. Mol. Struct. 1123, 133.CrossRefGoogle Scholar
  32. 32.
    J. Wang, X. Q. Zhao, N. Wang, and Y. C. Li (2015). J. Coord. Chem..  https://doi.org/10.1080/00958972.2015.1011145.Google Scholar
  33. 33.
    Y. Y. Yu (2017). J. Mol. Struct. 1137, 109.CrossRefGoogle Scholar
  34. 34.
    X. H. Li, Q. F. Liu, and Y. L. Dong (2016). Synth. React. Inorg. M. 46, 1202.CrossRefGoogle Scholar
  35. 35.
    Z. W. Fan, L. Li, K. Cui, S. S. Yang, and F. Q. Han (2016). Synth. React. Inorg. M..  https://doi.org/10.1080/15533174.2015.1136962.Google Scholar
  36. 36.
    S. S. Feng, L. Xie, L. Q. Lu, M. L. Zhu, and F. Su (2018). J. Solid. State. Chem. 258, 335.CrossRefGoogle Scholar
  37. 37.
    X. J. Xu and J. Wang (2015). J. Struct. Chem. 56, 782.CrossRefGoogle Scholar
  38. 38.
    Y. J. Mu, J. X. Xie, Y. G. Ran, B. Han, and G. F. Qin (2015). Polyhedron..  https://doi.org/10.1016/j.poly.2014.12.029.Google Scholar
  39. 39.
    Y. L. Dong and X. F. Meng (2018). J. Mol. Struct. 1164, 89.CrossRefGoogle Scholar
  40. 40.
    J. Zhao, H. Y. Lin, G. C. Liu, X. Wang, B. Y. Yu, and X. L. Wang (2018). Transit. Chem. Met..  https://doi.org/10.1007/s11243-018-0212-x.Google Scholar
  41. 41.
    B. B. Sherino, S. Mohamad, N. S. AbdulManan, and H. Tareen (2018). Transit. Chem. Met..  https://doi.org/10.1007/s11243-017-0193-1.Google Scholar
  42. 42.
    D. W. Wang, T. Wang, T. Yan, L. Du, and Q. H. Zhao (2018). Transit. Chem. Met..  https://doi.org/10.1007/s11243-017-0180-6.Google Scholar
  43. 43.
    H. L. Ngo and W. B. Lin (2002). J. Am. Chem. Soc. 124, 14298.CrossRefGoogle Scholar
  44. 44.
    J. G. Mao, Z. K. Wang, and A. Clearfield (2002). InorgChem. 41, 6106.Google Scholar
  45. 45.
    C. G. Zhang, H. H. Zhang, and Y. N. Cao (2009). Chin. J. Struct. Chem. 28, 893.Google Scholar
  46. 46.
    G. M. Sheldrick SADABS (University of Gottingen, Gottingen, Germany, 1996).Google Scholar
  47. 47.
    G. M. Sheldrick SHELXS 97, Program for the Solution of Crystal Structures (University of Gottingen, Gottingen, Germany, 1997).Google Scholar
  48. 48.
    M. Du, X. J. Jiang, and X. J. Zhao (2007). Inorg. Chem. 46, 3984.CrossRefGoogle Scholar
  49. 49.
    C. N. Rao, S. Natarajan, and R. Vaidhyanathan (2004). Angew. Chem. Int. Ed. 43, 1466.CrossRefGoogle Scholar
  50. 50.
    X. Xu, X. Zhang, X. Liu, T. Sun, and E. Wang (2010). Cryst. Growth Des. 10, 2272.CrossRefGoogle Scholar
  51. 51.
    H. Wu, X. L. Lü, C. L. Yang, C. X. Dong, and M. S. Wu (2014). CrystEngComm. 16, 992.CrossRefGoogle Scholar
  52. 52.
    S. R. Zheng, S. Y. Yin, M. Pan, L. Chen, B. B. Du, Y. J. Hou, K. Wu, and Y. X. Zhu (2015). Inorg. Chem. Commun. 55, 116.CrossRefGoogle Scholar
  53. 53.
    K. Tomar, M. Gupta, and A. K. Gupta (2016). Inorg. Chem. Commun. 64, 16.CrossRefGoogle Scholar
  54. 54.
    W. Xu, J. Jiang, M. Pan, and C. Su (2013). Inorg. Chem. Commun. 31, 83.CrossRefGoogle Scholar
  55. 55.
    P. Pan, C. F. Sun, S. M. Chen, and Y. Yao (2011). Inorg. Chem. Commun. 14, 1333.CrossRefGoogle Scholar
  56. 56.
    X. L. Wang, L. L. Hou, J. W. Zhang, J. X. Zhang, G. C. Liu, and S. Yang (2012). CrystEngComm. 14, 3936.CrossRefGoogle Scholar
  57. 57.
    Z. Hu, B. J. Deibert, and J. Li (2014). Chem. Soc. Rev. 43, 5815.CrossRefGoogle Scholar
  58. 58.
    S. Y. Hao, Y. G. Liu, Z. C. Hao, and G. H. Cui (2016). Z. Anorg. Allg. Chem. 642, 618.CrossRefGoogle Scholar
  59. 59.
    L. H. Cao, Y. L. Wei, Y. Yang, H. Xu, S. Q. Zang, H. W. Hou, and T. C. W. Mak (2014). Cryst. Growth Des. 14, 1827.CrossRefGoogle Scholar
  60. 60.
    J. Hu, H. H. Zhang, and Y. N. Cao (2009). Chin. J. Struct. Chem. 28, 939.Google Scholar
  61. 61.
    X. Y. Wu, H. X. Qi, J. J. Ning, J. F. Wang, Z. G. Ren, and J. P. Lang (2015). Appl. Catal. B 168, 98.CrossRefGoogle Scholar
  62. 62.
    S. Y. Hao, Y. H. Li, J. Zhu, and G. H. Cui (2017). Ultrason. Sonochem..  https://doi.org/10.1016/j.ultsonch.2017.06.028.Google Scholar
  63. 63.
    R. Q. Sun, J. Hu, H. H. Zhang, Y. N. Cao, Z. B. Ye, Y. Q. Wang, and Y. P. Chen (2010). Spectrosc. Spect. Anal. 30, 2215.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ling-Yan Zhao
    • 1
  • Lei Feng
    • 1
  • Xiao-Chen Deng
    • 1
  • Li-Wei Liu
    • 1
  • Li Ren
    • 1
  1. 1.Qian’an CollegeNorth China University of Science and TechnologyQian’anChina

Personalised recommendations