Skip to main content
Log in

A Computational Study on the Purinethol Drug Adsorption on the AlN Nanocone and Nanocluster

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Using density functional theory calculations, the adsorption behavior and electronic sensitivity of an Al12N12 nanocluster, and an AlN nanocone were investigated toward purinethol (PE) drug. The drug tends to adsorbs on the AlN nanocluster and nanocone via its N atom with adsorption energies about − 38.2 and − 23.4 kcal/mol, respectively. The AlN nanocluster suffers from a long recovery time of about 3.1 × 1011 s at 298 K, and cannot be used as a sensor for PE drug. But the electrical conductivity of the AlN nanocone is largely increased by the PE drug adsorption which makes it sensitive to the drug. Also, AlN nanocone benefits from a short recovery time of about 20.8 s at room temperature. Thus, it was concluded that the AlN nanocone may be a promising candidate for detection of PE drug. We also show that by increasing the percentage of Hartree–Fock exchange in the functional, the adsorption energy is increased and the sensitivity is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Sahasranaman, D. Howard, and S. Roy (2008). Clinical pharmacology and pharmacogenetics of thiopurines. Eur. J. Clin. Pharmacol. 64, 753–767.

    Article  CAS  PubMed  Google Scholar 

  2. A. A. Ensafi and H. Karimi-Maleh (2012). Determination of 6-mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes-TiO2 as a voltammetric sensor. Drug Test. Anal. 4, 970–977.

    Article  CAS  PubMed  Google Scholar 

  3. Z. Chen, G. Zhang, X. Chen, J. Chen, J. Liu, and H. Yuan (2013). A fluorescence switch sensor for 6-mercaptopurine detection based on gold nanoparticles stabilized by biomacromolecule. Biosens. Bioelectron. 41, 844–847.

    Article  CAS  PubMed  Google Scholar 

  4. B.-Y. Lu, H. Li, H. Deng, Z. Xu, W.-S. Li, and H.-Y. Chen (2008). Voltammetric determination of 6-mercaptopurine using [Co (phen) 3] 3 +/MWNT modified graphite electrode. J. Electroanal. Chem. 621, 97–102.

    Article  CAS  Google Scholar 

  5. L. Wang and Z. Zhang (2008). The study of oxidization fluorescence sensor with molecular imprinting polymer and its application for 6-mercaptopurine (6-MP) determination. Talanta 76, 768–771.

    Article  CAS  PubMed  Google Scholar 

  6. R. Boulieu and T. Dervieux (1999). High-performance liquid chromotographic determination of methyl 6-mercaptopurine nucleotides (Me6-MPN) in red blood cells: Analysis of Me6-MPN per se or Me6-MPN derivative? J. Chromatogr. B Biomed. Sci. Appl. 730, 273–274.

    Article  CAS  PubMed  Google Scholar 

  7. S. Bashiri, E. Vessally, A. Bekhradnia, A. Hosseinian, and L. Edjlali (2017). Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum 136, 156–162.

    Article  CAS  Google Scholar 

  8. H. Salimi, A. A. Peyghan, and M. Noei (2015). Adsorption of formic acid and formate anion on ZnO nanocage: A DFT study. J. Cluster Sci. 26, 609–621.

    Article  CAS  Google Scholar 

  9. F. Behmagham, E. Vessally, B. Massoumi, A. Hosseinian, and L. Edjlali (2016). A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattices Microstruct. 100, 350–357.

    Article  CAS  Google Scholar 

  10. A. A. Peyghan, M. B. Tabar, and S. Yourdkhani (2013). A theoretical study of OH and OCH3 free radical adsorption on a nanosized tube of BC2N. J. Cluster Sci. 24, 1–10.

    Article  CAS  Google Scholar 

  11. J. Beheshtian, M. T. Baei, Z. Bagheri, and A. A. Peyghan (2013). Carbon nitride nanotube as a sensor for alkali and alkaline earth cations. Appl. Surf. Sci. 264, 699–706.

    Article  CAS  Google Scholar 

  12. A. Hosseinian, A. Bekhradnia, E. Vessally, L. Edjlali, and M. D. Esrafili (2017). A DFT study on the central-ring doped HBC nanographenes. J. Mol. Graph. Model. 73, 101–107.

    Article  CAS  PubMed  Google Scholar 

  13. A. A. Peyghan, M. T. Baei, S. Hashemian, and P. Torabi (2013) First principles calculations of electric field effect on the (6, 0) zigzag single-walled silicon carbide nanotube for use in nano-electronic circuits. J. Cluster Sci. 24, 591–604.

    Article  CAS  Google Scholar 

  14. M. T. Baei, A. A. Peyghan, and Z. Bagheri (2013) Electronic, energetic, and geometric properties of methylene-functionalized C60. J. Cluster Sci. 24, 669–678.

    Article  CAS  Google Scholar 

  15. A. A. Peyghan, M. T. Baei, and S. Hashemian (2013). ZnO nanocluster as a potential catalyst for dissociation of H2S molecule. J. Cluster Sci. 24, 341–347.

    Article  CAS  Google Scholar 

  16. E. Vessally, S. A. Siadati, A. Hosseinian, and L. Edjlali (2017). Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment. Talanta 162, 505–510.

    Article  CAS  PubMed  Google Scholar 

  17. K. Nejati, E. Vessally, P. D. K. Nezhad, H. Mofid, and A. Bekhradnia (2017). The electronic response of pristine, Al and Si doped BC2N nanotubes to a cathinone molecule: Computational study. J. Phys. Chem. Solids 111, 238–244.

    Article  CAS  Google Scholar 

  18. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Monatshefte für Chemie/Chem. Mon. 143, 1623–1626.

    Article  CAS  Google Scholar 

  19. M. T. Baei, A. A. Peyghan, and Z. Bagheri (2013). Selective adsorption behavior of BC2N nanotubes toward fluoride and chloride. Solid State Commun. 159, 8–12.

    Article  CAS  Google Scholar 

  20. N. L. Hadipour, A. Ahmadi Peyghan, and H. Soleymanabadi (2015). Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C 119, 6398–6404.

    Article  CAS  Google Scholar 

  21. K. Nejati, A. Hosseinian, L. Edjlali, and E. Vessally (2017). The effect of structural curvature on the cell voltage of BN nanotube based Na-ion batteries. J. Mol. Liq. 229, 167–171.

    Article  CAS  Google Scholar 

  22. L. Safari, E. Vessally, A. Bekhradnia, A. Hosseinian, and L. Edjlali (2017). A Density functional theory study of the sensitivity of two-dimensional BN nanosheet to nerve agents cyclosarin and tabun. Thin Solid Films 623, 157–163.

    Article  CAS  Google Scholar 

  23. A. A. Peyghan and H. Soleymanabadi (2015). Computational study on ammonia adsorption on the X12Y12 nanoclusters (X = B, Al and Y = N, P). Curr. Sci. 108, 00113891.

    Google Scholar 

  24. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2013). Functionalization of BN nanosheet with N2H4 may be feasible in the presence of Stone–Wales defect. Struct. Chem. 24, 1565–1570.

    Article  CAS  Google Scholar 

  25. M. Samadizadeh, S. F. Rastegar, and A. A. Peyghan (2015). F, Cl, Li+ and Na+ adsorption on AlN nanotube surface: A DFT study. Physica E 69, 75–80.

    Article  CAS  Google Scholar 

  26. Z. Rostami and H. Soleymanabadi (2017). Investigation of phosgene adsorption behavior on aluminum nitride nanocones: Density functional study. J. Mol. Liq. 248, 473–478.

    Article  CAS  Google Scholar 

  27. J. Beheshtian, A. A. Peyghan, Z. Bagheri, and M. Kamfiroozi (2012). Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct. Chem. 23, 1567–1572.

    Article  CAS  Google Scholar 

  28. Z. Bagheri and A. A. Peyghan (1008). DFT study of NO2 adsorption on the AlN nanocones. Comput. Theor. Chem. 2013, 20–26.

    Google Scholar 

  29. A. V. Moradi, A. A. Peyghan, S. Hashemian, and M. T. Baei (2012). Theoretical study of thiazole adsorption on the (6, 0) zigzag single-walled boron nitride nanotube. Bull. Korean Chem. Soc. 33, 3285–3292.

    Article  CAS  Google Scholar 

  30. J. Beheshtian, H. Soleymanabadi, A. A. Peyghan, and Z. Bagheri (2012). A DFT study on the functionalization of a BN nanosheet with PC-X, (PC = phenyl carbamate, X = OCH3, CH3, NH2, NO2 and CN). Appl. Surf. Sci. 268, 436–441.

    Article  CAS  Google Scholar 

  31. M. T. Baei, M. R. Taghartapeh, E. T. Lemeski, and A. Soltani (2014). A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages. Phys. B 444, 6–13.

    Article  CAS  Google Scholar 

  32. J. Beheshtian, A. A. Peyghan, M. B. Tabar, and Z. Bagheri (2013). DFT study on the functionalization of a BN nanotube with sulfamide. Appl. Surf. Sci. 266, 182–187.

    Article  CAS  Google Scholar 

  33. E. Vessally, F. Behmagham, B. Massoumi, A. Hosseinian, and L. Edjlali (2016). Carbon nanocone as an electronic sensor for HCl gas: Quantum chemical analysis. Vacuum 134, 40–47.

    Article  CAS  Google Scholar 

  34. G. Wang, H. Yuan, A. Kuang, W. Hu, G. Zhang, and H. Chen (2014). High-capacity hydrogen storage in Li-decorated (AlN)n (n = 12, 24, 36) nanocages. Int. J. Hydrog. Energy 39, 3780–3789.

    Article  CAS  Google Scholar 

  35. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2013). Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J. Mol. Model. 19, 2197–2203.

    Article  CAS  PubMed  Google Scholar 

  36. A. S. Rad and K. Ayub (2016). Detailed surface study of adsorbed nickel on Al12N12 nano-cage. Thin Solid Films 612, 179–185.

    Article  CAS  Google Scholar 

  37. M. T. Baei, E. Tazikeh Lemeski, and A. Soltani (2017). DFT study of the adsorption of H2O2 inside and outside Al12N12 nano-cage. Russ. J. Phys. Chem. A 91, 1527–1534.

    Article  CAS  Google Scholar 

  38. J. Beheshtian, A. Ahmadi Peyghan, and Z. Bagheri (2012). A first-principles study of H2S adsorption and dissociation on the AlN nanotube. Physica E 44, 1963–1968.

    Article  CAS  Google Scholar 

  39. A. Soltani, A. Ahmadi Peyghan, and Z. Bagheri (2013). H2O2 adsorption on the BN and SiC nanotubes: A DFT study. Physica E 48, 176–180.

    Article  CAS  Google Scholar 

  40. M. T. Baei, A. Soltani, and S. Hashemian (2016). Adsorption properties of hydrazine on pristine and Si-doped Al12N12 nano-cage. Phosphorus Sulfur Silicon Relat. Elem. 191, 702–708.

    Article  CAS  Google Scholar 

  41. D. L. Strout (2000). Structure and stability of boron nitrides: Isomers of B12N12. J. Phys. Chem. A 104, 3364–3366.

    Article  CAS  Google Scholar 

  42. R. Wang, D. Zhang, and C. Liu (2005). Theoretical prediction of a novel inorganic fullerene-like family of silicon–carbon materials. Chem. Phys. Lett. 411, 333–338.

    Article  CAS  Google Scholar 

  43. H.-S. Wu, F.-Q. Zhang, X.-H. Xu, C.-J. Zhang, and H. Jiao (2003). Geometric and energetic aspects of aluminum nitride cages. J. Phys. Chem. A 107, 204–209.

    Article  CAS  Google Scholar 

  44. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe (2009). Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3, 621–626.

    Article  CAS  PubMed  Google Scholar 

  45. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Selective function of Al12N12 nano-cage towards NO and CO molecules. Comput. Mater. Sci. 62, 71–74.

    Article  CAS  Google Scholar 

  46. C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, H. Sang, J. Zhu, S. Deng, and N. Xu (2005). Vaporsolid growth and characterization of aluminum nitride nanocones. J. Am. Chem. Soc. 127, 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  47. Q. Wu, N. Liu, Y. Zhang, W. Qian, X. Wang, and Z. Hu (2015). Tuning the field emission properties of AlN nanocones by doping. J. Mater. Chem. C 3, 1113–1117.

    Article  CAS  Google Scholar 

  48. M. Mirzaei, M. Yousefi, and M. Meskinfam (2012). Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies. Superlattices Microstruct. 51, 809–813.

    Article  CAS  Google Scholar 

  49. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comp. Chem. 14, 1347–1363.

    Article  CAS  Google Scholar 

  50. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Detection of phosgene by Sc-doped BN nanotubes: A DFT study. Sens. Actuators B Chem. 171, 846–852.

    Article  CAS  Google Scholar 

  51. M. A. Abdulsattar (2011). SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: Density functional theory study. Superlattices Microstruct. 50, 377–385.

    Article  CAS  Google Scholar 

  52. A. Soltani, M. T. Baei, E. Tazikeh Lemeski, S. Kaveh, and H. Balakheyli (2015). A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J. Phys. Chem. Solids 86, 57–64.

    Article  CAS  Google Scholar 

  53. S. Tomic, B. Montanari, and N. M. Harrison (2008). The group III–V’s semiconductor energy gaps predicted using the B3LYP hybrid functional. Physica E 40, 2125–2127.

    Article  CAS  Google Scholar 

  54. N. O’Boyle, A. Tenderholt, and K. Langner (2008). Cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845.

    Article  CAS  PubMed  Google Scholar 

  55. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, Al M. A. Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople (2008) Gaussian 03, revision C, 02.

  56. R. Dennington, T. Keith, and J. Millam (2009) GaussView, version 5. Semichem Inc., Shawnee Mission.

  57. A. Ahmadi Peyghan, N. Hadipour, and Z. Bagheri (2013). Effects of Al-doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: DFT studies. J. Phys. Chem. C 117, 2427–2432.

    Article  CAS  Google Scholar 

  58. M. Eslami, V. Vahabi, and A. A. Peyghan (2016). Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: a computational study. Physica E 76, 6–11.

    Article  CAS  Google Scholar 

  59. M. Samadizadeh, A. A. Peyghan, and S. F. Rastegar (2015). Sensing behavior of BN nanosheet toward nitrous oxide: A DFT study. Chin. Chem. Lett. 26, 1042–1045.

    Article  CAS  Google Scholar 

  60. H. Wang, T. Maiyalagan, and X. Wang (2012). Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794.

    Article  CAS  Google Scholar 

  61. Y. Zhao and D. G. Truhlar (2006). A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101.

    Article  CAS  PubMed  Google Scholar 

  62. Y. Zhao and D. G. Truhlar (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241.

    Article  CAS  Google Scholar 

  63. Y. Zhao and D. G. Truhlar (2006). Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A 110, 13126–13130.

    Article  CAS  PubMed  Google Scholar 

  64. E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, and A. Bekhradnia (2017). The Hartree-Fock exchange effect on the CO adsorption by the boron nitride nanocage. Physica E 87, 308–311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge from Mazandaran University of Medical Sciences and Payame Noor University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Vessally or A. Bekhradnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javarsineh, S.A., Vessally, E., Bekhradnia, A. et al. A Computational Study on the Purinethol Drug Adsorption on the AlN Nanocone and Nanocluster. J Clust Sci 29, 767–775 (2018). https://doi.org/10.1007/s10876-018-1381-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1381-7

Keywords

Navigation