Journal of Cluster Science

, Volume 29, Issue 4, pp 585–592 | Cite as

Investigation of the Intermolecular Hydrogen Bonding Effects on the Intramolecular Charge Transfer Process of Coumarin 340 in Tetrahydrofuran Solvent

  • Hui Li
  • Jianhui Han
  • Huifang Zhao
  • Xiaochun Liu
  • Lina Ma
  • Chaofan Sun
  • Hang Yin
  • Ying ShiEmail author
Original Paper


Density functional theory and time-dependent density functional theory methods were carried out to investigate the excited-state intramolecular charge transfer process (ICT) of coumarin 340 (C340) in tetrahydrofuran (THF) solvent for the first time. The plotted electrostatic potential and optimized geometric structures vividly indicated that the intermolecular hydrogen bond can be formed between the N–H group of C340 monomer and the oxygen atom of THF solvent. The analysis of frontier molecular orbitals and the differences in electronegativity confirmed the occurrence of ICT process in hydrogen-bonded complex C340-THF upon photoexcitation. The results of calculated bond lengths and bond energies revealed that the intermolecular hydrogen bond in C340-THF is significantly strengthened in the first excited state. Furthermore, the calculated electronic spectra, non-covalent interactions and IR spectra provided strong evidence for the hydrogen bond reinforce. Based on the theoretical calculations, we demonstrated that the ICT process in C340-THF can be facilitated effectively by the excited-state intermolecular hydrogen bond strengthening.


Intramolecular charge transfer Intermolecular hydrogen bond Infrared spectra Non-covalent interactions 



This work was supported by the National Basic Research Program of China (973 Program) (2013CB922204), the National Natural Science Foundation of China (No. 11574115) and the Natural Science Foundation of Jilin Province of China (Grant No. 20150101063JC).


  1. 1.
    P. Song, Y. Z. Li, F. C. Ma, T. Pullerits, and M. T. Sun (2013). J. Phys. Chem. C 117, 15879.CrossRefGoogle Scholar
  2. 2.
    J. S. Yang, K. L. Liau, C. M. Wang, and C. Y. Hwang (2004). J. Am. Chem. Soc. 126, 12325.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    S. Asir, A. S. Demir, and H. Icil (2010). Dyes Pigments 84, 1.CrossRefGoogle Scholar
  4. 4.
    B. Poor, N. Michniewicz, M. Kallay, W. J. Buma, M. Kubinyi, A. Szemik-Hojniak, I. Deperasinska, A. Puszko, and H. Zhang (2006). J. Phys. Chem. A 110, 7086.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    D. Rappoport and F. Furche (2004). J. Am. Chem. Soc. 126, 1277.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Y. Wang, Y. Shi, L. Cong, and H. Li (2015). Spectrochim. Acta. A 137, 913.CrossRefGoogle Scholar
  7. 7.
    J. Dreyer and A. Kummrow (2000). J. Am. Chem. Soc. 122, 2577.CrossRefGoogle Scholar
  8. 8.
    W. M. Kwok, C. Ma, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, and M. Towrie (2000). Chem. Phys. Lett. 322, 395.CrossRefGoogle Scholar
  9. 9.
    X. Liu, Y. Liu, and Y. Zheng (2016). Chem. Phys. Lett. 645, 92.CrossRefGoogle Scholar
  10. 10.
    L. C. Zhou, G. J. Zhao, J. F. Liu, K. L. Han, Y. K. Wu, X. J. Peng, and M. T. Sun (2007). J. Photoch. Photobio. A 187, 305.CrossRefGoogle Scholar
  11. 11.
    S. Vijayalakshmi and S. Kalyanaraman (2016). J. Phys. Org. Chem. 29, 436.CrossRefGoogle Scholar
  12. 12.
    C. H. Lim, M. D. Ryan, B. G. McCarthy, J. C. Theriot, S. M. Sartor, N. H. Damrauer, C. B. Musgrave, and G. M. Miyake (2017). J. Am. Chem. Soc. 139, 348.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Q. T. Zhang and J. M. Tour (1998). J. Am. Chem. Soc. 120, 5355.CrossRefGoogle Scholar
  14. 14.
    D. Yang, X. Li, and Y. Liu (2013). J. Clust. Sci. 24, 497.CrossRefGoogle Scholar
  15. 15.
    Y. Cheng, X. Zhang, and W. Zhang (2013). J. Clust. Sci. 24, 471.CrossRefGoogle Scholar
  16. 16.
    M. Li, W. Ren, Z. He, and Y. Zhu (2017). J. Clust. Sci. 28, 2111.CrossRefGoogle Scholar
  17. 17.
    J. F. Zhao, J. S. Chen, P. Song, J. Y. Liu, and F. C. Ma (2015). J. Clust. Sci. 26, 1463.CrossRefGoogle Scholar
  18. 18.
    M. Zhang, M. Zhang, Y. Liu, Y. Chen, K. Zhang, C. Wang, X. Zhao, C. Zhou, J. Gao, X. Xie, D. Zheng, and G. Zhao (2017). J. Mol. Liq. 242, 1118.CrossRefGoogle Scholar
  19. 19.
    Y. Yang, D. Li, C. Li, Y. Liu, and K. Jiang (2017). Spectrochim. Acta A 187, 68.CrossRefGoogle Scholar
  20. 20.
    L. Cong, H. Yin, Y. Shi, M. X. Jin, and D. J. Ding (2015). RSC Adv. 5, 1205.CrossRefGoogle Scholar
  21. 21.
    J. Z. Zhang, G. Y. Zhao, R. Z. Li, and D. Y. Hou (2011). J. Clust. Sci. 22, 501.CrossRefGoogle Scholar
  22. 22.
    G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A 113, 14329.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    K. L. Han and G. J. Zhao Hydrogen Bonding and Transfer in the Excited State (Wiley Online Library, New York, 2011).Google Scholar
  24. 24.
    G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    X. C. Liu, H. Yin, H. Li, and Y. Shi (2017). Spectrochim. Acta A 177, 1.CrossRefGoogle Scholar
  26. 26.
    H. Li, H. Yin, X. Liu, Y. Shi, M. Jin, and D. Ding (2017). Spectrochim. Acta A 184, 270.CrossRefGoogle Scholar
  27. 27.
    A. Pedone, J. Bloino, and V. Barone (2012). J. Phys. Chem. C 116, 17807.CrossRefGoogle Scholar
  28. 28.
    D. M. Lia, W. J. Zhao, X. D. Suna, J. L. Zhang, M. Anpob, and J. C. Zhao (2006). Dyes Pigments 68, 33.CrossRefGoogle Scholar
  29. 29.
    G. Calzaferri, M. Pauchard, H. Maa, S. Huber, A. Khatyr, and T. Schaafsma (2002). J. Mater. Chem. 12, 1.CrossRefGoogle Scholar
  30. 30.
    B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin (1979). J. Chem. Phys. 71, 3396.CrossRefGoogle Scholar
  31. 31.
    Y. R. Fang and M. T. Sun (2015). Light-Sci. Appl. 4, e294.CrossRefGoogle Scholar
  32. 32.
    M. Sun, Y. Fang, Z. Yang, and H. Xu (2009). Phys. Chem. Chem. Phys. 11, 9412.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    O. Vahtras, J. Almlöf, and M. W. Feyereisen (1993). Chem. Phys. Lett. 213, 514.CrossRefGoogle Scholar
  34. 34.
    P. Zhou, J. Liu, S. Yang, J. Chen, K. Han, and G. He (2012). Phys. Chem. Chem. Phys. 14, 15191.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    M. P. Balanay and D. H. Kim (2011). J. Phys. Chem. C 115, 19424.CrossRefGoogle Scholar
  36. 36.
    M. J. G. Peach, E. I. Tellgren, P. Sałek, T. Helgaker, and D. J. Tozer (2007). J. Phys. Chem. A 111, 11930.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    B. M. Wong, M. Piacenza, and F. D. Sala (2009). Phys. Chem. Chem. Phys. 11, 4498.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  39. 39.
    P. Deglmann and F. Furche (2002). J. Chem. Phys. 117, 9535.CrossRefGoogle Scholar
  40. 40.
    P. Deglmann, K. May, F. Furche, and R. Ahlrichs (2004). Chem. Phys. Lett. 384, 103.CrossRefGoogle Scholar
  41. 41.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford, CT, USA, 2009.Google Scholar
  42. 42.
    P. A. Hunt, B. Kirchner, and T. Welton (2006). Chem. Eur. J. 12, 6762.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    G. E. Jara, C. A. Solis, N. S. Gsponer, J. J. Torres, C. A. Glusko, C. M. Previtali, A. B. Pierini, D. M. A. Vera, C. A. Chesta, and H. A. Montejano (2015). Dyes Pigments 112, 341.CrossRefGoogle Scholar
  44. 44.
    G. J. Zhao and K. L. Han (2008). J. Comput. Chem. 29, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    G. J. Zhao and K. L. Han (2012). Accounts. Chem. Res. 45, 404.CrossRefGoogle Scholar
  46. 46.
    K. L. Han and G. J. Zhao (2008). ChemPhysChem. 9, 1842.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, and W. Yang (2010). J. Am. Chem. Soc. 132, 762.Google Scholar
  48. 48.
    G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 9218.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Y. Z. Li, X. M. Zhao, Y. Q. Li, P. Song, Y. Ding, L. L. Ji, X. G. Lu, and M. D. Chen (2012). J. Theor. Comput. Chem. 11, 273.CrossRefGoogle Scholar
  51. 51.
    X. H. Zhao and M. D. Chen (2010). J. Phys. Chem. A 114, 7786.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hui Li
    • 1
  • Jianhui Han
    • 1
  • Huifang Zhao
    • 1
  • Xiaochun Liu
    • 1
  • Lina Ma
    • 1
  • Chaofan Sun
    • 1
  • Hang Yin
    • 1
  • Ying Shi
    • 1
    Email author
  1. 1.Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular SpectroscopyJilin UniversityChangchunChina

Personalised recommendations