Advertisement

Journal of Cluster Science

, Volume 29, Issue 5, pp 847–852 | Cite as

Structural Evolution and Superatoms in Molybdenum Atom Stabilized Boron Clusters: MoBn (n = 10–24)

  • Yuqing Wang
  • Xue Wu
  • Jijun Zhao
Original Paper
  • 101 Downloads

Abstract

Doping transition metal atom is known as an effective approach to stabilize an atomic cluster and modify its structure and electronic properties. We herein report the effect of molybdenum doping on the structural evolution of medium-sized boron clusters. The lowest-energy structures of MoBn (n = 10, 12, 14, 16, 18, 20, 22, 24) clusters are globally searched using genetic algorithm combined with density functional theory calculations. We found that Mo doping has significantly affected the grow behaviors of Bn clusters, leading to a structural evolution from bowl-like to tubular and finally endohedral cage. The size-dependent binding energy, HOMO–LUMO gap, vertical ionization potential and vertical electron affinity show that MoB12, MoB22 and MoB24 clusters have relatively higher stability and enhanced chemical inertness. More interestingly, the endohedral MoB22 cage is identified as an elegant superatom, which satisfies 18-electron closed shell configuration well.

Keywords

Molybdenum doped boron clusters Superatom Structure 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11574040), the Fundamental Research Funds for the Central Universities (DUT16-LAB01, DUT17LAB19), and the Supercomputing Center of Dalian University of Technology.

References

  1. 1.
    J. Zhao, L. Ma, D. Tian, and R. Xie (2008). J. Comput. Theor. Nano. 5, 7.Google Scholar
  2. 2.
    H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.CrossRefGoogle Scholar
  3. 3.
    J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coord. Chem. Rev. 289–290, 315.CrossRefGoogle Scholar
  4. 4.
    X. Huang, H. G. Xu, S. Lu, Y. Su, R. B. King, J. Zhao, and W. Zheng (2014). Nanoscale 6, 14617.CrossRefGoogle Scholar
  5. 5.
    H. Hiura, T. Miyazaki, and T. Kanayama (2001). Phys. Rev. Lett. 86, 1733.CrossRefGoogle Scholar
  6. 6.
    V. Kumar and Y. Kawazoe (2003). Phys. Rev. Lett. 91, 199901.CrossRefGoogle Scholar
  7. 7.
    S. N. Khanna, B. K. Rao, and P. Jena (2002). Phys. Rev. Lett. 89, 016803.CrossRefGoogle Scholar
  8. 8.
    P. Pyykkö (2006). J. Organomet. Chem. 691, 4336.CrossRefGoogle Scholar
  9. 9.
    N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson (2008). Phys. Rev. Lett 98, 166804.CrossRefGoogle Scholar
  10. 10.
    J. Zhao, L. Wang, F. Li, and Z. Chen (2010). J. Phys. Chem. A 114, 9969.CrossRefGoogle Scholar
  11. 11.
    F. Li, P. Jin, D. Jiang, L. Wang, S. B. Zhang, J. Zhao, and Z. Chen (2012). J. Chem. Phys. 136, 074302.CrossRefGoogle Scholar
  12. 12.
    P. Pochet, L. Genovese, S. De, S. Goedecker, D. Caliste, S. A. Ghasemi, K. Bao, and T. Deutsch (2011). Phys. Rev. B 83, 081403R.CrossRefGoogle Scholar
  13. 13.
    J. Lv, Y. Wang, L. Zhang, H. Lin, J. Zhao, and Y. Ma (2015). Nanoscale 7, 10482.CrossRefGoogle Scholar
  14. 14.
    L. S. Wang (2016). Int. Rev. Phys. Chem. 35, 69.CrossRefGoogle Scholar
  15. 15.
    N. M. Tam, H. T. Pham, L. V. Duong, M. P. Phamho, and M. T. Nguyen (2015). Phys. Chem. Chem. Phys. 17, 3000.CrossRefGoogle Scholar
  16. 16.
    L. Zhao, X. Qu, Y. Wang, J. Lv, L. Zhang, Z. Y. Hu, G. R. Gu, and Y. Ma (2017). J. Phys. Condens. Matter. 29, 265401.CrossRefGoogle Scholar
  17. 17.
    H. R. Li, H. Liu, X. X. Tian, W. Y. Zan, Y. W. Mu, H. G. Lu, J. Li, Y. K. Wang, and S. D. Li (2017). Phys. Chem. Chem. Phys. 19, 27025.CrossRefGoogle Scholar
  18. 18.
    C. Romanescu, T. R. Galeev, W. L. Li, A. I. Boldyrev, and L. S. Wang (2011). Angew. Chem. Int. Ed. 50, 9334.CrossRefGoogle Scholar
  19. 19.
    W.-L. Li, C. Romanescu, T. R. Galeev, Z. A. Piazza, A. I. Boldyrev, and L.-S. Wang (2012). J. Am. Chem. Soc. 134, 165.CrossRefGoogle Scholar
  20. 20.
    T. R. Galeev, C. Romanescu, W. L. Li, L. S. Wang, and A. I. Boldyrev (2012). Cheminform 43, 2101.CrossRefGoogle Scholar
  21. 21.
    C. Romanescu, T. R. Galeev, A. P. Sergeeva, W. L. Li, L. S. Wang, and A. I. Boldyrev (2012). J. Organomet. Chem. 721–722, 148.CrossRefGoogle Scholar
  22. 22.
    C. Romanescu, T. R. Galeev, W. L. Li, A. I. Boldyrev, and L. S. Wang (2013). J. Chem. Phys. 138, 6004.CrossRefGoogle Scholar
  23. 23.
    I. A. Popov, T. Jian, G. V. Lopez, A. I. Boldyrev, and L. S. Wang (2015). Nat. Commun. 6, 8654.CrossRefGoogle Scholar
  24. 24.
    T. Jian, W. L. Li, X. Chen, T. T. Chen, G. V. Lopez, J. Li, and L. S. Wang (2016). Chem. Sci. 7, 7020.CrossRefGoogle Scholar
  25. 25.
    T. Jian, W. L. Li, I. A. Popov, G. V. Lopez, X. Chen, A. I. Boldyrev, J. Li, and L. S. Wang (2016). J. Chem. Phys. 144, 154310.CrossRefGoogle Scholar
  26. 26.
    J. Zhao, R. Shi, L. Sai, X. Huang, and Y. Su (2016). Mol. Simul. 42, 1.CrossRefGoogle Scholar
  27. 27.
    B. Delley (2000). J. Chem. Phys. 113, 7756.CrossRefGoogle Scholar
  28. 28.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  29. 29.
    X. Huang, Y. Su, L. Sai, J. Zhao, and V. Kumar (2014). J. Cluster Sci. 26, 389.CrossRefGoogle Scholar
  30. 30.
    X. Huang, H. G. Xu, S. Lu, Y. Su, R. B. King, J. Zhao, and W. Zheng (2014). Nanoscale 6, 14617.CrossRefGoogle Scholar
  31. 31.
    X. Huang, S. J. Lu, X. Liang, Y. Su, L. Sai, Z. G. Zhang, J. Zhao, H. G. Xu, and W. Zheng (2015). J. Phys. Chem. C 119, 10987.CrossRefGoogle Scholar
  32. 32.
    X. Wu, S. J. Lu, X. Liang, X. Huang, Y. Qin, M. Chen, J. Zhao, H. G. Xu, R. B. King, and W. Zheng (2017). J. Chem. Phys. 146, 044306.CrossRefGoogle Scholar
  33. 33.
    X. Q. Liang, X. J. Deng, S. J. Lu, X. M. Huang, J. J. Zhao, H. G. Xu, W. J. Zheng, and X. C. Zeng (2017). J. Phys. Chem. C 121, 7037.CrossRefGoogle Scholar
  34. 34.
    L. Sai, X. Wu, N. Gao, J. Zhao, and R. B. King (2017). Nanoscale 9, 13905.CrossRefGoogle Scholar
  35. 35.
    C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158.CrossRefGoogle Scholar
  36. 36.
    G. W. Trucks, M. J. Frisch, and H. B. Schlegel Gaussian 09, Revision A.01 (Gaussian Inc., Wallingford, 2009).Google Scholar
  37. 37.
    R.-N. Zhao, Y. Yuan, and J.-G. Han (2014). J. Theor. Comput. Chem. 13, 1450036.CrossRefGoogle Scholar
  38. 38.
    I. A. Popov, W. L. Li, Z. A. Piazza, A. I. Boldyrev, and L. S. Wang (2014). J. Phys. Chem. A 118, 8098.CrossRefGoogle Scholar
  39. 39.
    C. Romanescu, D. J. Harding, A. Fielicke, and L. S. Wang (2012). J. Chem. Phys. 137, 014317.CrossRefGoogle Scholar
  40. 40.
    D. C. Ghosh and R. Biswas (2002). Int J Mol Sci 3, 87.CrossRefGoogle Scholar
  41. 41.
    W. L. Li, T. Jian, X. Chen, H. R. Li, T. T. Chen, X. M. Luo, S. D. Li, J. Li, and L. S. Wang (2017). Chem. Commun. (Camb) 53, 1587.CrossRefGoogle Scholar
  42. 42.
    R. G. Pearson (2005). J. Chem. Sci. 117, 369.CrossRefGoogle Scholar
  43. 43.
    A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev (2014). Cheminform 47, 1349.Google Scholar
  44. 44.
    K. B. Wiberg (1968). Tetrahedron 24, 1083.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology)Ministry of EducationDalianChina

Personalised recommendations