Journal of Cluster Science

, Volume 29, Issue 4, pp 561–575 | Cite as

Encapsulation of Nickel Nanoparticles and Homopoly(Vinylsulfonic Acid) in Mesoporous Carbon CMK-3 as an Acid–Metal Bifunctional Catalyst for Tandem Reductive Amination

  • Roozbeh Javad Kalbasi
  • Parisa Parishani
  • Omid Mazaheri
Original Paper


Facile and clean transformation for synthesizing secondary arylamines through one-pot reductive amination of aniline has been catalyzed by supported nickel nanocluster and poly(vinylsulfonic acid) into mesoporous carbon CMK-3 (Ni/PVSA/CMK-3) as a bi-functional metal/acid heterogeneous catalyst. Vinylsulfonic acid has been polymerized in CMK-3 pores by an in situ method. The process was run in the presence of NaBH4 at room temperature, in a short reaction time, and without secondary product. Various characterization techniques, including FT-IR, XRD, TG, BET, SEM, TEM, DRS-UV, and AAS were employed to disclose the physical and chemical properties of the catalyst. Reaction results demonstrate that the optimized Ni/PVSA/CMK-3 catalyst shows comparable catalytic performance thanks to the nickel metals and the acidic nature of polymer incorporated in mesoporous channels of CMK-3. Besides being eco-friendly (using water as solvent), the method has several advantages such as simple work-up procedure and moderate to high-yield. This catalyst was easily filtered and reused without noticeable loss of activity after 10 runs.


One-pot reductive amination Nickel nanoparticles Poly(vinylsulfonic acid) Acid–metal bifunctional catalyst 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    S. Gomez, J. A. Peters, and T. Maschmeyer (2002). Adv. Synth. Catal. 344, 1037.CrossRefGoogle Scholar
  2. 2.
    E. W. Baxter and A. B. Reitz (2004). Org. React. 59, 1.Google Scholar
  3. 3.
    A. F. Abdel-Magid and S. J. Mehrman (2006). Org. Process Res. Dev. 10, 971.CrossRefGoogle Scholar
  4. 4.
    Y. Z. Chen, Y. X. Zhou, H. Wang, J. Lu, T. Uchida, Q. Xu, S. H. Yu, and H. L. Jiang (2015). ACS Catal. 5, 2062.CrossRefGoogle Scholar
  5. 5.
    M. Nasrollahzadeh and S. M. Sajadi (2016). J. Colloid Interface Sci. 464, 147.CrossRefGoogle Scholar
  6. 6.
    J. W. Park and Y. K. Chung (2015). ACS Catal. 5, 4846.CrossRefGoogle Scholar
  7. 7.
    C. C. Lee and S. T. Liu (2011). Chem. Commun. 47, 6981.CrossRefGoogle Scholar
  8. 8.
    M. H. Valkenberg and W. F. Holderich (2002). Catal. Rev. 44, 321.CrossRefGoogle Scholar
  9. 9.
    Q. Zhang, S. S. Li, M. M. Zhu, Y. M. Liu, H. Y. He, and Y. Cao (2016). Green Chem. 18, 2507.CrossRefGoogle Scholar
  10. 10.
    A. Saha and B. Ranu (2008). J. Org. Chem. 73, 6867.CrossRefGoogle Scholar
  11. 11.
    A. Rahman and S. B. Jonnalagadda (2008). Catal. Lett. 123, 264.CrossRefGoogle Scholar
  12. 12.
    R. Rajesh and R. Venkatesan (2012). J. Mol. Catal. A Chem. 359, 88.CrossRefGoogle Scholar
  13. 13.
    F. Alonso, P. Riente, and M. Yus (2008). Synlett 9, 1289.CrossRefGoogle Scholar
  14. 14.
    F. Alonso, P. Riente, and M. Yus (1998). Tetrahedron 54, 1921.CrossRefGoogle Scholar
  15. 15.
    D. Shah and H. Kaur (2014). J. Mol. Catal. A Chem. 381, 70.CrossRefGoogle Scholar
  16. 16.
    L. F. Giraldo, B. L. López, L. Pérez, S. Urrego, L. Sierra, and M. Mesa (2007). Macromol. Symp. 258, 129.CrossRefGoogle Scholar
  17. 17.
    O. Mazaheri and R. J. Kalbasi (2015). RSC Adv. 5, 34398.CrossRefGoogle Scholar
  18. 18.
    S. K. Jain, R. J. M. Pellenq, K. E. Gubbins, and X. Peng (2017). Langmuir 33, 2109.CrossRefGoogle Scholar
  19. 19.
    A. Eftekhari and Z. Fan (2017). Mater. Chem. Front. 1, 1001.CrossRefGoogle Scholar
  20. 20.
    M. Choi and R. Ryoo (2003). Nat. Mater. 2, 473.CrossRefGoogle Scholar
  21. 21.
    S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki (2000). J. Am. Chem. Soc. 122, 10712.CrossRefGoogle Scholar
  22. 22.
    M. Colilla, F. Balas, M. Manzano, and M. Vallet-Regí (2007). Chem. Mater. 19, 3099.CrossRefGoogle Scholar
  23. 23.
    R. J. Kalbasi and O. Mazaheri (2016). New J. Chem. 40, 9627.CrossRefGoogle Scholar
  24. 24.
    J. He, K. Ma, J. Jin, Z. Dong, J. Wang, and R. Li (2009). Microporous Mesoporous Mater. 121, 173.CrossRefGoogle Scholar
  25. 25.
    T. Okayasu, K. Saito, H. Nishide, and M. T. W. Hearn (2009). Chem. Commun. 0, 4708.CrossRefGoogle Scholar
  26. 26.
    M. Erkartal, H. Usta, M. Citir, and U. Sen (2016). J. Membr. Sci. 499, 156.CrossRefGoogle Scholar
  27. 27.
    D. Li, J. Li, D. Mao, H. Wen, Y. Zhou, and J. Wang (2017). Mater. Chem. Phys. 189, 118.CrossRefGoogle Scholar
  28. 28.
    D. D. Jiang, Q. Yao, M. A. McKinney, and C. A. Wilkie (1999). Polym. Degrad. Stab. 63, 423.CrossRefGoogle Scholar
  29. 29.
    K. H. Wu, Y. R. Wang, and W. H. Hwu (2003). Polym. Degrad. Stab. 79, 195.CrossRefGoogle Scholar
  30. 30.
    R. J. Kalbasi and N. Mosaddegh (2011). J. Solid State Chem. 184, 3095.CrossRefGoogle Scholar
  31. 31.
    S. Chytil, W. R. Glomm, E. Vollebekk, H. Bergem, J. Walmsley, J. Sjoblom, and E. A. Blekkan (2005). Microporous Mesoporous Mater. 86, 198.CrossRefGoogle Scholar
  32. 32.
    H. Song, R. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, and G. A. Somorjai (2006). J. Am. Chem. Soc. 128, 3027.CrossRefGoogle Scholar
  33. 33.
    P. Dibandjo, F. Chassagneux, L. Bois, C. Sigala, and P. Miele (2005). J. Mater. Chem. 15, 1917.CrossRefGoogle Scholar
  34. 34.
    D. Brühwiler and H. Frei (2003). J. Phys. Chem. B. 107, 8547.CrossRefGoogle Scholar
  35. 35.
    S. Kim, B. K. Yoo, K. Chun, W. Kang, J. Choo, M. S. Gong, and S. W. Joo (2005). J. Mol. Catal. A Chem. 226, 231.CrossRefGoogle Scholar
  36. 36.
    R. Jana, T. P. Pathak, and M. S. Sigman (2011). Chem. Rev. 111, 1417.CrossRefGoogle Scholar
  37. 37.
    E. Levin, E. Ivry, C. E. Diesendruck, and N. G. Lemcoff (2015). Chem. Rev. 115, 4607.CrossRefGoogle Scholar
  38. 38.
    H. Wena, K. Yao, Y. Zhang, Z. Zhou, and A. Kirschning (2009). Catal. Commun. 19, 1207.CrossRefGoogle Scholar
  39. 39.
    O. Metin and S. Ozkar (2008). J. Mol. Catal. A Chem. 295, 39.CrossRefGoogle Scholar
  40. 40.
    R. J. Kalbasi and F. Zamani (2014). RSC Adv. 4, 7444.CrossRefGoogle Scholar
  41. 41.
    R. J. Kalbasi, N. Mosaddegh, and A. Abbaspourrad (2012). Appl. Catal. A Gen. 78, 423–424.Google Scholar
  42. 42.
    R. J. Kalbasi and O. Mazaheri (2015). Catal. Commun. 69, 86.CrossRefGoogle Scholar
  43. 43.
    M. A. Harrad, B. Boualy, L. El Firdoussi, A. Mehdi, C. Santi, S. Giovagnoli, M. Nocchetti, and M. Ait Ali (2013). Catal. Commun. 32, 92.CrossRefGoogle Scholar
  44. 44.
    Y. Zhai, Y. Dou, X. Liu, S. S. Park, C. S. Ha, and D. Zhao (2011). Carbon 49, 545.CrossRefGoogle Scholar
  45. 45.
    S. E. Bozbag, L. C. Zhang, M. Aindow, and C. Erkey (2012). J. Supercrit. Fluids 66, 265.CrossRefGoogle Scholar
  46. 46.
    N. Uday Kumar, B. Sudhakar Reddy, V. Prabhakar Reddy, and R. Bandichhor (2012). Tetrahedron Lett. 53, 4354.CrossRefGoogle Scholar
  47. 47.
    R. P. Tripathi, S. S. Verma, J. Pandey, and V. K. Tiwari (2008). Curr. Org. Chem. 12, 1093.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Roozbeh Javad Kalbasi
    • 1
  • Parisa Parishani
    • 2
  • Omid Mazaheri
    • 2
  1. 1.Faculty of ChemistryKharazmi UniversityTehranIran
  2. 2.Department of Chemistry, Shahreza BranchIslamic Azad UniversityIsfahanIran

Personalised recommendations