Journal of Cluster Science

, Volume 29, Issue 3, pp 533–540 | Cite as

Antiferromagnetic Coupling in a New Mn(III) Schiff Base Complex with Open-Cubane Core: Structure, Spectroscopic and Luminescence Properties

  • Elif Gungor
  • Mustafa Burak Coban
  • Hulya Kara
  • Yasemin Acar
Original Paper


A new open-cubane MnIII, [{(H2O)MnIIIL}{MnIIIL}]2·2(CH3OH).2(CH3CH2OH)·2Cl, 1 where H 2 L=[N-(2-hydroxyethyl)-3-methoxysalicylaldimine] has been synthesized and characterized by element analysis, FT-IR, solid UV–Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows an open-cubane tetranuclear complex. The Mn1 (Mn1i) ions is hexacoordinate by NO5 donor sets while the Mn2 (Mn2i) is pentacoordinate by NO4 donor sets. The solid state photoluminescence properties of complex 1 and its ligand H 2 L have been investigated under UV light at 349 nm in the visible region. H 2 L exhibits blue emission while complex 1 shows orange-red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex 1 in the range 2–300 K indicate an antiferromagnetic interaction.


Open-cubane Mn complex Crystal structure Luminescence Antiferromagnetic coupling 



The authors are grateful to the Research Funds of Balikesir University (BAP–2017/200) for the financial support and Balikesir University, Science and Technology Application and Research Center (BUBTAM) for the use of the Photoluminescence Spectrometer. The authors are also very grateful to Prof. Dr. Andrea Caneschi (Laboratory of Molecular Magnetism, Department of Chemistry, University of Florence) for the use of SQUID magnetometer and helpful suggestions.

Supplementary material

10876_2018_1360_MOESM1_ESM.docx (615 kb)
Supplementary material 1 (DOCX 615 kb)


  1. 1.
    T. G. Carrell, S. Cohen, and G. C. Dismukes (2002). J. Mol. Catal. A Chem. 187, 3.CrossRefGoogle Scholar
  2. 2.
    J. Liu, Z. Liu, S. Yuan, and J. Liu (2013). J. Mol. Struct. 1037, 191.CrossRefGoogle Scholar
  3. 3.
    N. Hoshino, T. Ito, M. Nihei, and H. Oshio (2003). Inorg. Chem. Commun. 6, 377.CrossRefGoogle Scholar
  4. 4.
    L. P. Nitha, R. Aswathy, N. E. Mathews, B. Sindhu Kumari, and K. Mohanan (2014). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 154.CrossRefGoogle Scholar
  5. 5.
    W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, and G. Christou (2002). Nature 416, 406.CrossRefGoogle Scholar
  6. 6.
    D. Gatteschi and R. Sessoli (2003). Angew. Chem. Int. Ed. 42, 268.CrossRefGoogle Scholar
  7. 7.
    S. Mandal, G. Rosair, J. Ribas, and D. Bandyopadhyay (2009). Inorg. Chim. Acta 362, 2200.CrossRefGoogle Scholar
  8. 8.
    C. Lee and C. M. Aikens (2015). J. Phys. Chem. A 119, 9325.CrossRefGoogle Scholar
  9. 9.
    H. Hou (2011). Materials (Basel) 4, 1693.CrossRefGoogle Scholar
  10. 10.
    S. Q. Zang, L. H. Cao, R. Liang, H. W. Hou, and T. C. W. Mak (2012). Cryst. Growth Des. 12, 1830.CrossRefGoogle Scholar
  11. 11.
    J. K. Nath, A. Mondal, A. K. Powell, and J. B. Baruah (2014). Cryst. Growth Des. 14, 4735.CrossRefGoogle Scholar
  12. 12.
    R. Zhang, Z.-H. Ni, L.-F. Zhang, and H.-Z. Kou (2014). Bull. Korean Chem. Soc. 35, 1965.CrossRefGoogle Scholar
  13. 13.
    C. E. Dubé, D. W. Wright, S. Pal, P. J. Bonitatebus, and W. H. Armstrong (1998). J. Am. Chem. Soc. 120, 3704.CrossRefGoogle Scholar
  14. 14.
    M. K. Chan and W. H. Armstrong (1991). J. Am. Chem. Soc. 113, 5055.CrossRefGoogle Scholar
  15. 15.
    J. Yoo, A. Yamaguchi, M. Nakano, J. Krzystek, W. E. Streib, L. Brunel, H. Ishimoto, G. Christou, and D. N. Hendrickson (2001). Inorg. Chem. 40, 4604.CrossRefGoogle Scholar
  16. 16.
    D. Li, H. Wang, S. Wang, Y. Pan, C. Li, J. Dou, and Y. Song (2010). Inorg. Chem. 49, 3688.CrossRefGoogle Scholar
  17. 17.
    P. J. Bettle, L. N. Dawe, M. U. Anwar, and L. K. Thompson (2011). Eur. J. Inorg. Chem. 5036.Google Scholar
  18. 18.
    E. A. Karlsson, B.-L. Lee, T. Åkermark, E. V. Johnston, M. D. Kärkäs, J. Sun, Ö. Hansson, J.-E. Bäckvall, and B. Åkermark (2011). Angew. Chem. Int. Ed. 50, 11715.CrossRefGoogle Scholar
  19. 19.
    S. Mukhopadhyay, J. Staples, W. H. Armstrong, and R. Purdue (2002). Chem. Commun. 4, 864.CrossRefGoogle Scholar
  20. 20.
    H. Chen, J. W. Faller, R. H. Crabtree, and G. W. Brudvig (2004). J. Am. Chem. Soc. 126, 7345.CrossRefGoogle Scholar
  21. 21.
    C. Mn, V. Mckee, and W. Shepard (1985). J. Chem. Soc. Chem. Commun. 4, 158.Google Scholar
  22. 22.
    J. Z. Wu, E. Sellitto, G. P. A. Yap, J. Sheats, and G. C. Dismukes (2004). Inorg. Chem. 43, 5795.CrossRefGoogle Scholar
  23. 23.
    G. Aromí, S. Bhaduri, P. Artús, K. Folting, and G. Christou (2002). Inorg. Chem. 41, 805.CrossRefGoogle Scholar
  24. 24.
    Z. S. Bai, Z. P. Qi, Y. Lu, Q. Yuan, and W. Y. Sun (2008). Cryst. Growth Des. 8, 1924.CrossRefGoogle Scholar
  25. 25.
    H. Chen, M.-N. Collomb, C. Duboc, G. Blondin, E. Rivière, J. W. Faller, R. H. Crabtree, and G. W. Brudvig (2005). Inorg. Chem. 44, 9567.CrossRefGoogle Scholar
  26. 26.
    C. C. Stoumpos, N. Lalioti, I. A. Gass, K. Gkotsis, A. A. Kitos, H. Sartzi, C. J. Milios, C. P. Raptopoulou, A. Terzis, E. K. Brechin, and S. P. Perlepes (2009). Polyhedron 28, 2017.CrossRefGoogle Scholar
  27. 27.
    L. B. Jerzykiewicz, J. Utko, M. Duczmal, P. Starynowicz, and P. Sobota (2010). Eur. J. Inorg. Chem. 28, 4492.CrossRefGoogle Scholar
  28. 28.
    C. C. Beedle, C. J. Stephenson, J. Katie, W. Wernsdorfer, D. N. Hendrickson, and K. J. Heroux (2008). Inorg. Chem. 47, 10798.CrossRefGoogle Scholar
  29. 29.
    H. Kara (2007). Z. Naturforsch. 62, 691.CrossRefGoogle Scholar
  30. 30.
    Y. Yahsi and H. Kara (2014). Spectrochim. Acta Part A Mol. Biomol Spectrosc. 127, 25.CrossRefGoogle Scholar
  31. 31.
    Y. Yahsi, E. Gungor, M. B. Coban, and H. Kara (2016). Mol. Cryst. Liq. Cryst. 637, 67.CrossRefGoogle Scholar
  32. 32.
    H. K. Ara and H. Kara (2008). Anal. Sci. 24, 79.Google Scholar
  33. 33.
    O. Kahn Molecular Magnetism (VCH Publishers, New York, 1993).Google Scholar
  34. 34.
    E. Gungor and H. Kara (2015). J. Struct. Chem. 56, 1646.CrossRefGoogle Scholar
  35. 35.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
  36. 36.
    G. M. Sheldrick (2008). Acta Crystallogr. A 64, 112.CrossRefGoogle Scholar
  37. 37.
    G. M. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 3.CrossRefGoogle Scholar
  38. 38.
    A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor (1984). J. Chem. Soc. Dalton Trans. 1349.Google Scholar
  39. 39.
    G. J. Palenik (1997). Inorg. Chem. 36, 4888.CrossRefGoogle Scholar
  40. 40.
    W. Liu and H. H. Thorp (1993). Inorg. Chem. 32, 4102.CrossRefGoogle Scholar
  41. 41.
    C. Kocak, G. Oylumluoglu, A. Donmez, M. B. Coban, U. Erkarslan, M. Aygun, and H. Kara (2017). Acta Crystallogr. Sect. C Struct. Chem. 73, 414.CrossRefGoogle Scholar
  42. 42.
    Z.-L. You and H.-L. Zhu (2004). Z. Für Anorg. Und Allg Chem. 630, 2754.CrossRefGoogle Scholar
  43. 43.
    E. S. Aazam, A. F. EL Husseiny, and H. M. Al-Amri (2012). Arab. J. Chem. 5, 45.CrossRefGoogle Scholar
  44. 44.
    E. Gungor (2017). Acta Crystallogr. Sect. C Struct. Chem. 73, 393.CrossRefGoogle Scholar
  45. 45.
    E. Gungor, S. Celen, D. Azaz, and H. Kara (2012). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 94, 216.CrossRefGoogle Scholar
  46. 46.
    A. B. Lever Inorganic Electronic Spectroscopy, Vol. 33, Studies in Physical and Theoretical Chemistry (Elsevier, Amsterdam, 1984).Google Scholar
  47. 47.
    X.-Z. Guo, Z.-Y. Zhang, Z.-L. Li, S.-S. Shi, and S.-S. Chen (2017). Crystals 7, 73.CrossRefGoogle Scholar
  48. 48.
    S.-S. Chen, Q. Liu, Y. Zhao, R. Qiao, L.-Q. Sheng, Z.-D. Liu, S. Yang, and C.-F. Song (2014). Cryst. Growth Des. 14, 3727.CrossRefGoogle Scholar
  49. 49.
    K. H. He, W. C. Song, Y. W. Li, Y. Q. Chen, and X. H. Bu (2012). Cryst. Growth Des. 12, 1064.CrossRefGoogle Scholar
  50. 50.
    A. Donmez, M. B. Coban, C. Kocak, G. Oylumluoglu, U. Baisch, and H. Kara (2017). Mol. Cryst. Liq. Cryst. 652, 213.CrossRefGoogle Scholar
  51. 51.
    A. Donmez, G. Oylumluoglu, M. B. Coban, C. Kocak, M. Aygun, and H. Kara (2017). J. Mol. Struct. 1149, 569.CrossRefGoogle Scholar
  52. 52.
    B. Valeur Molecular Fluorescence: Principles and Application (Wiley-VCH, Weinheim, 2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and ArtBalikesir UniversityBalikesirTurkey
  2. 2.Center of Science and Technology Application and ResearchBalikesir UniversityBalikesirTurkey
  3. 3.Department of Physics, Faculty of ScienceMugla Sitki Kocman UniversityMuglaTurkey

Personalised recommendations