Skip to main content
Log in

Computational Studies on the ScnNm (n + m=10) Clusters: Structure, Electronic and Vibrational Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Besides the size and structure, compositions also dramatically affect the properties of clusters. In fact, the increased degree of freedom poses much more challenges to determine the global minimum structure of multi-component clusters. In this thesis, based on the CALYPSO structure searching method, the global minimum structures are obtained for ScnNm (n + m=10) clusters at PW91/6-311+G(d) level. The growth behavior indicates that the cage unit tends to arrange into the compact configurations, and the occupied positions of N atoms shift from the surface towards the center of coordination site with the increasing number of Sc atoms. The relative stabilities have been discussed by analyzing the average binding energies and HOMO–LUMO gaps. In addition, the molecular orbitals, dipole moments, polarizability, hyperpolarizabilities, natural population, natural electron configuration, and Infared and Raman spectra calculations allow complete characterization of the electronic and vibrational properties for the global minimum structural clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.

    Article  CAS  Google Scholar 

  2. P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke (2008). Science 321, 674.

    Article  CAS  Google Scholar 

  3. S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, and T. F. Fassler (2011). Angew. Chem. Int. Ed. 50, 3630.

    Article  CAS  Google Scholar 

  4. E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown (1993). Nature 366, 42.

    Article  CAS  Google Scholar 

  5. A. H. Lu, E. L. Salabas, and F. Schuth (2007). Angew. Chem. Int. Ed. 46, 1222.

    Article  CAS  Google Scholar 

  6. R. S. Ram and P. E. Bernath (1992). J. Chem. Phys. 96, 6344.

    Article  CAS  Google Scholar 

  7. G. V. Chertihin, L. Andrews, and C. W. Bauschlicher (1998). J. Am. Chem. Soc. 120, 3205.

    Article  CAS  Google Scholar 

  8. J. P. Dismukes, W. M. Yin, and V. S. Ban (1972). J. Cryst. Growth 365, 13.

    Google Scholar 

  9. W. J. Lengauer (1988). Solid-State Chem. 76, 412.

    Article  CAS  Google Scholar 

  10. R. Niewa, D. A. Zherebtsov, M. Kirchner, M. Schmidt, and W. Schnelle (2004). Chem. Mater. 16, 5445.

    Article  CAS  Google Scholar 

  11. M. Karl, G. Seybert, W. Massa, and K. Z. Dehnicke (1999). Anorg. Allg. Chem. 625, 375.

    Article  CAS  Google Scholar 

  12. G. H. Jeung and J. Koutecky (1988). J. Chem. Phys. 88, 3747.

    Article  CAS  Google Scholar 

  13. M. J. Xu, Y. Z. Zhang, J. Zhang, B. J. Qian, J. Y. Lu, Y. F. Zhang, L. Wang, and X. S. Chen (2012). Chem. Phys. Lett. 551, 126.

    Article  CAS  Google Scholar 

  14. A. Daoudi, S. Elkhattabi, G. Berthier, and J. P. Flament (1998). Chem. Phys. 230, 31.

    Article  CAS  Google Scholar 

  15. Y. Gong, Y. Y. Zhao, and M. Zhou (2007). J. Phys. Chem. A 111, 6204.

    Article  CAS  Google Scholar 

  16. Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma (2010). Phys. Rev. B 82, 094116.

    Article  Google Scholar 

  17. Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma (2012). Comput. Phys. Commun. 183, 2063.

    Article  CAS  Google Scholar 

  18. Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, H. Y. Liu, and Y. M. Ma (2012). J. Chem. Phys. 137, 224108-1–224108-6.

    Google Scholar 

  19. Y. Y. Jin, G. Maroulis, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, J. Lv, C. Z. Zhang, and M. Ju (2015). Phys. Chem. Chem. Phys. 17, 13590.

    Article  CAS  Google Scholar 

  20. X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. X. Dong (2016). J. Phys. Chem. C 120, 677.

    Article  CAS  Google Scholar 

  21. Y. Y. Jin, Y. H. Tian, X. Y. Kuang, C. Z. Zhang, C. Lu, J. J. Wang, J. Lv, L. P. Ding, and M. Ju (2015). J. Phys. Chem. A 119, 6738.

    Article  CAS  Google Scholar 

  22. C. Lu, M. S. Miao, and Y. M. Ma (2013). J. Am. Chem. Soc. 135, 14167.

    Article  CAS  Google Scholar 

  23. C. G. Li, J. Zhang, Y. Q. Yuan, Y. N. Tang, and B. Z. Ren (2017). Physica E. 86, 303.

    Article  CAS  Google Scholar 

  24. C. G. Li, Z. G. Shen, Y. F. Hu, Y. N. Tang, W. G. Chen, and B. Z. Ren (2017). SCI REP-UK 7, 1345.

    Article  Google Scholar 

  25. X. D. Xing, H. Andreas, X. Y. Kuang, M. Ju, C. Lu, Y. Y. Jin, X. X. Xia, and G. Maroulis (2016). SCI REP-UK 9, 19656.

    Article  Google Scholar 

  26. X. X. Xia, X. Y. Kuang, C. Lu, Y. Y. Jin, X. D. Xing, G. Merino, and A. Hermann (2016). J. Phys. Chem. A 120, 7947.

    Article  CAS  Google Scholar 

  27. W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Inorg. Chem. 56, 1241.

    Article  CAS  Google Scholar 

  28. J. J. Wang, G. L. Sun, P. Kong, W. G. Sun, C. Lu, F. Peng, and X. Y. Kuang (2017). Phys. Chem. Chem. Phys. 19, 16206.

    Article  CAS  Google Scholar 

  29. J. Meng, G. L. Sun, X. Y. Kuang, C. Lu, Y. S. Zhu, and Y. Y. Yeung (2017). J. Mater. Chem. C. 5, 7174.

    Article  Google Scholar 

  30. A. D. Mclean and G. S. Chandler (1980). J. Chem. Phys. 72, 5639.

    Article  CAS  Google Scholar 

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 (Gaussian, Wallingford, CT, 2004).

  32. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B 46, 6671.

    Article  CAS  Google Scholar 

  33. I. Papai and M. Castro (1997). Chem. Phys. Lett. 267, 551.

    Article  CAS  Google Scholar 

  34. W. Humphrey, A. Dalke, and K. Schulten (1996). J. Mol. Graph 14, 33.

    Article  CAS  Google Scholar 

  35. T. Lu and F. W. Chen (2012). J. Comput. Chem. 33, 580.

    Article  Google Scholar 

  36. H. Alyar, Z. Kantarci, M. Bahat, and E. Kasap (2007). J. Mol. Struct. 516, 834.

    Google Scholar 

  37. J. Guan, M. E. Casida, A. M. Koster, and D. R. Salahub (2014). Phys. Rev. B 52, 1995.

    Google Scholar 

  38. G. D. Zhou and L. Y. Duan Structural Chemistry Basis (Peking University Press, Beijing, 2002).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Natural Science Foundation of China (Grant no. 11647030), the China Postdoctoral Science Foundation funded project (Grant No. 2017M623310XB), Education Department of Sichuan province (Grant number 17ZA0278), and Sichuan University of Science and Engineering (Grant Nos. 2015RC44 and 2013RC10). Henan Postdoctoral Science Foundation (2015020) and the Key Scientific Research Project of Henan College (17A140031 and 17B480003), Science and Technology Plan Projects of Henan Province (172102210115), Innovative and experimental project of undergraduates (DCZ2016004 and DCZ2016007). This work was supported by Sichuan University of Science and Engineering High Performance Computing Center of Science and Engineering provided computational.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Fei Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CG., Zhou, JC., Hu, YF. et al. Computational Studies on the ScnNm (n + m=10) Clusters: Structure, Electronic and Vibrational Properties. J Clust Sci 29, 459–468 (2018). https://doi.org/10.1007/s10876-018-1352-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1352-z

Keywords

Navigation