Computational Studies on the ScnNm (n + m=10) Clusters: Structure, Electronic and Vibrational Properties


Besides the size and structure, compositions also dramatically affect the properties of clusters. In fact, the increased degree of freedom poses much more challenges to determine the global minimum structure of multi-component clusters. In this thesis, based on the CALYPSO structure searching method, the global minimum structures are obtained for ScnNm (n + m=10) clusters at PW91/6-311+G(d) level. The growth behavior indicates that the cage unit tends to arrange into the compact configurations, and the occupied positions of N atoms shift from the surface towards the center of coordination site with the increasing number of Sc atoms. The relative stabilities have been discussed by analyzing the average binding energies and HOMO–LUMO gaps. In addition, the molecular orbitals, dipole moments, polarizability, hyperpolarizabilities, natural population, natural electron configuration, and Infared and Raman spectra calculations allow complete characterization of the electronic and vibrational properties for the global minimum structural clusters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.

    CAS  Article  Google Scholar 

  2. 2.

    P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke (2008). Science 321, 674.

    CAS  Article  Google Scholar 

  3. 3.

    S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, and T. F. Fassler (2011). Angew. Chem. Int. Ed. 50, 3630.

    CAS  Article  Google Scholar 

  4. 4.

    E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown (1993). Nature 366, 42.

    CAS  Article  Google Scholar 

  5. 5.

    A. H. Lu, E. L. Salabas, and F. Schuth (2007). Angew. Chem. Int. Ed. 46, 1222.

    CAS  Article  Google Scholar 

  6. 6.

    R. S. Ram and P. E. Bernath (1992). J. Chem. Phys. 96, 6344.

    CAS  Article  Google Scholar 

  7. 7.

    G. V. Chertihin, L. Andrews, and C. W. Bauschlicher (1998). J. Am. Chem. Soc. 120, 3205.

    CAS  Article  Google Scholar 

  8. 8.

    J. P. Dismukes, W. M. Yin, and V. S. Ban (1972). J. Cryst. Growth 365, 13.

    Google Scholar 

  9. 9.

    W. J. Lengauer (1988). Solid-State Chem. 76, 412.

    CAS  Article  Google Scholar 

  10. 10.

    R. Niewa, D. A. Zherebtsov, M. Kirchner, M. Schmidt, and W. Schnelle (2004). Chem. Mater. 16, 5445.

    CAS  Article  Google Scholar 

  11. 11.

    M. Karl, G. Seybert, W. Massa, and K. Z. Dehnicke (1999). Anorg. Allg. Chem. 625, 375.

    CAS  Article  Google Scholar 

  12. 12.

    G. H. Jeung and J. Koutecky (1988). J. Chem. Phys. 88, 3747.

    CAS  Article  Google Scholar 

  13. 13.

    M. J. Xu, Y. Z. Zhang, J. Zhang, B. J. Qian, J. Y. Lu, Y. F. Zhang, L. Wang, and X. S. Chen (2012). Chem. Phys. Lett. 551, 126.

    CAS  Article  Google Scholar 

  14. 14.

    A. Daoudi, S. Elkhattabi, G. Berthier, and J. P. Flament (1998). Chem. Phys. 230, 31.

    CAS  Article  Google Scholar 

  15. 15.

    Y. Gong, Y. Y. Zhao, and M. Zhou (2007). J. Phys. Chem. A 111, 6204.

    CAS  Article  Google Scholar 

  16. 16.

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma (2010). Phys. Rev. B 82, 094116.

    Article  Google Scholar 

  17. 17.

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma (2012). Comput. Phys. Commun. 183, 2063.

    CAS  Article  Google Scholar 

  18. 18.

    Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, H. Y. Liu, and Y. M. Ma (2012). J. Chem. Phys. 137, 224108-1–224108-6.

    Google Scholar 

  19. 19.

    Y. Y. Jin, G. Maroulis, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, J. Lv, C. Z. Zhang, and M. Ju (2015). Phys. Chem. Chem. Phys. 17, 13590.

    CAS  Article  Google Scholar 

  20. 20.

    X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. X. Dong (2016). J. Phys. Chem. C 120, 677.

    CAS  Article  Google Scholar 

  21. 21.

    Y. Y. Jin, Y. H. Tian, X. Y. Kuang, C. Z. Zhang, C. Lu, J. J. Wang, J. Lv, L. P. Ding, and M. Ju (2015). J. Phys. Chem. A 119, 6738.

    CAS  Article  Google Scholar 

  22. 22.

    C. Lu, M. S. Miao, and Y. M. Ma (2013). J. Am. Chem. Soc. 135, 14167.

    CAS  Article  Google Scholar 

  23. 23.

    C. G. Li, J. Zhang, Y. Q. Yuan, Y. N. Tang, and B. Z. Ren (2017). Physica E. 86, 303.

    CAS  Article  Google Scholar 

  24. 24.

    C. G. Li, Z. G. Shen, Y. F. Hu, Y. N. Tang, W. G. Chen, and B. Z. Ren (2017). SCI REP-UK 7, 1345.

    Article  Google Scholar 

  25. 25.

    X. D. Xing, H. Andreas, X. Y. Kuang, M. Ju, C. Lu, Y. Y. Jin, X. X. Xia, and G. Maroulis (2016). SCI REP-UK 9, 19656.

    Article  Google Scholar 

  26. 26.

    X. X. Xia, X. Y. Kuang, C. Lu, Y. Y. Jin, X. D. Xing, G. Merino, and A. Hermann (2016). J. Phys. Chem. A 120, 7947.

    CAS  Article  Google Scholar 

  27. 27.

    W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Inorg. Chem. 56, 1241.

    CAS  Article  Google Scholar 

  28. 28.

    J. J. Wang, G. L. Sun, P. Kong, W. G. Sun, C. Lu, F. Peng, and X. Y. Kuang (2017). Phys. Chem. Chem. Phys. 19, 16206.

    CAS  Article  Google Scholar 

  29. 29.

    J. Meng, G. L. Sun, X. Y. Kuang, C. Lu, Y. S. Zhu, and Y. Y. Yeung (2017). J. Mater. Chem. C. 5, 7174.

    Article  Google Scholar 

  30. 30.

    A. D. Mclean and G. S. Chandler (1980). J. Chem. Phys. 72, 5639.

    CAS  Article  Google Scholar 

  31. 31.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 (Gaussian, Wallingford, CT, 2004).

  32. 32.

    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B 46, 6671.

    CAS  Article  Google Scholar 

  33. 33.

    I. Papai and M. Castro (1997). Chem. Phys. Lett. 267, 551.

    CAS  Article  Google Scholar 

  34. 34.

    W. Humphrey, A. Dalke, and K. Schulten (1996). J. Mol. Graph 14, 33.

    CAS  Article  Google Scholar 

  35. 35.

    T. Lu and F. W. Chen (2012). J. Comput. Chem. 33, 580.

    Article  Google Scholar 

  36. 36.

    H. Alyar, Z. Kantarci, M. Bahat, and E. Kasap (2007). J. Mol. Struct. 516, 834.

    Google Scholar 

  37. 37.

    J. Guan, M. E. Casida, A. M. Koster, and D. R. Salahub (2014). Phys. Rev. B 52, 1995.

    Google Scholar 

  38. 38.

    G. D. Zhou and L. Y. Duan Structural Chemistry Basis (Peking University Press, Beijing, 2002).

    Google Scholar 

Download references


The authors are grateful to Natural Science Foundation of China (Grant no. 11647030), the China Postdoctoral Science Foundation funded project (Grant No. 2017M623310XB), Education Department of Sichuan province (Grant number 17ZA0278), and Sichuan University of Science and Engineering (Grant Nos. 2015RC44 and 2013RC10). Henan Postdoctoral Science Foundation (2015020) and the Key Scientific Research Project of Henan College (17A140031 and 17B480003), Science and Technology Plan Projects of Henan Province (172102210115), Innovative and experimental project of undergraduates (DCZ2016004 and DCZ2016007). This work was supported by Sichuan University of Science and Engineering High Performance Computing Center of Science and Engineering provided computational.

Author information



Corresponding author

Correspondence to Yan-Fei Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1280 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhou, J., Hu, Y. et al. Computational Studies on the ScnNm (n + m=10) Clusters: Structure, Electronic and Vibrational Properties. J Clust Sci 29, 459–468 (2018).

Download citation


  • Density functional theory
  • Sc and N