Journal of Cluster Science

, Volume 29, Issue 3, pp 459–468 | Cite as

Computational Studies on the ScnNm (n + m=10) Clusters: Structure, Electronic and Vibrational Properties

  • Cheng-Gang Li
  • Jin-Cheng Zhou
  • Yan-Fei Hu
  • Bao-Zeng Ren
  • Jun-Tao Bai
  • Xian-Ke Hu
  • Wen Yang
Original Paper
  • 187 Downloads

Abstract

Besides the size and structure, compositions also dramatically affect the properties of clusters. In fact, the increased degree of freedom poses much more challenges to determine the global minimum structure of multi-component clusters. In this thesis, based on the CALYPSO structure searching method, the global minimum structures are obtained for ScnNm (n + m=10) clusters at PW91/6-311+G(d) level. The growth behavior indicates that the cage unit tends to arrange into the compact configurations, and the occupied positions of N atoms shift from the surface towards the center of coordination site with the increasing number of Sc atoms. The relative stabilities have been discussed by analyzing the average binding energies and HOMO–LUMO gaps. In addition, the molecular orbitals, dipole moments, polarizability, hyperpolarizabilities, natural population, natural electron configuration, and Infared and Raman spectra calculations allow complete characterization of the electronic and vibrational properties for the global minimum structural clusters.

Keywords

CALYPSO Density functional theory Sc and N 

Notes

Acknowledgements

The authors are grateful to Natural Science Foundation of China (Grant no. 11647030), the China Postdoctoral Science Foundation funded project (Grant No. 2017M623310XB), Education Department of Sichuan province (Grant number 17ZA0278), and Sichuan University of Science and Engineering (Grant Nos. 2015RC44 and 2013RC10). Henan Postdoctoral Science Foundation (2015020) and the Key Scientific Research Project of Henan College (17A140031 and 17B480003), Science and Technology Plan Projects of Henan Province (172102210115), Innovative and experimental project of undergraduates (DCZ2016004 and DCZ2016007). This work was supported by Sichuan University of Science and Engineering High Performance Computing Center of Science and Engineering provided computational.

Supplementary material

10876_2018_1352_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1280 kb)

References

  1. 1.
    R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.CrossRefGoogle Scholar
  2. 2.
    P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke (2008). Science 321, 674.CrossRefGoogle Scholar
  3. 3.
    S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, and T. F. Fassler (2011). Angew. Chem. Int. Ed. 50, 3630.CrossRefGoogle Scholar
  4. 4.
    E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown (1993). Nature 366, 42.CrossRefGoogle Scholar
  5. 5.
    A. H. Lu, E. L. Salabas, and F. Schuth (2007). Angew. Chem. Int. Ed. 46, 1222.CrossRefGoogle Scholar
  6. 6.
    R. S. Ram and P. E. Bernath (1992). J. Chem. Phys. 96, 6344.CrossRefGoogle Scholar
  7. 7.
    G. V. Chertihin, L. Andrews, and C. W. Bauschlicher (1998). J. Am. Chem. Soc. 120, 3205.CrossRefGoogle Scholar
  8. 8.
    J. P. Dismukes, W. M. Yin, and V. S. Ban (1972). J. Cryst. Growth 365, 13.Google Scholar
  9. 9.
    W. J. Lengauer (1988). Solid-State Chem. 76, 412.CrossRefGoogle Scholar
  10. 10.
    R. Niewa, D. A. Zherebtsov, M. Kirchner, M. Schmidt, and W. Schnelle (2004). Chem. Mater. 16, 5445.CrossRefGoogle Scholar
  11. 11.
    M. Karl, G. Seybert, W. Massa, and K. Z. Dehnicke (1999). Anorg. Allg. Chem. 625, 375.CrossRefGoogle Scholar
  12. 12.
    G. H. Jeung and J. Koutecky (1988). J. Chem. Phys. 88, 3747.CrossRefGoogle Scholar
  13. 13.
    M. J. Xu, Y. Z. Zhang, J. Zhang, B. J. Qian, J. Y. Lu, Y. F. Zhang, L. Wang, and X. S. Chen (2012). Chem. Phys. Lett. 551, 126.CrossRefGoogle Scholar
  14. 14.
    A. Daoudi, S. Elkhattabi, G. Berthier, and J. P. Flament (1998). Chem. Phys. 230, 31.CrossRefGoogle Scholar
  15. 15.
    Y. Gong, Y. Y. Zhao, and M. Zhou (2007). J. Phys. Chem. A 111, 6204.CrossRefGoogle Scholar
  16. 16.
    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma (2010). Phys. Rev. B 82, 094116.CrossRefGoogle Scholar
  17. 17.
    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma (2012). Comput. Phys. Commun. 183, 2063.CrossRefGoogle Scholar
  18. 18.
    Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, H. Y. Liu, and Y. M. Ma (2012). J. Chem. Phys. 137, 224108-1–224108-6.Google Scholar
  19. 19.
    Y. Y. Jin, G. Maroulis, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, J. Lv, C. Z. Zhang, and M. Ju (2015). Phys. Chem. Chem. Phys. 17, 13590.CrossRefGoogle Scholar
  20. 20.
    X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. X. Dong (2016). J. Phys. Chem. C 120, 677.CrossRefGoogle Scholar
  21. 21.
    Y. Y. Jin, Y. H. Tian, X. Y. Kuang, C. Z. Zhang, C. Lu, J. J. Wang, J. Lv, L. P. Ding, and M. Ju (2015). J. Phys. Chem. A 119, 6738.CrossRefGoogle Scholar
  22. 22.
    C. Lu, M. S. Miao, and Y. M. Ma (2013). J. Am. Chem. Soc. 135, 14167.CrossRefGoogle Scholar
  23. 23.
    C. G. Li, J. Zhang, Y. Q. Yuan, Y. N. Tang, and B. Z. Ren (2017). Physica E. 86, 303.CrossRefGoogle Scholar
  24. 24.
    C. G. Li, Z. G. Shen, Y. F. Hu, Y. N. Tang, W. G. Chen, and B. Z. Ren (2017). SCI REP-UK 7, 1345.CrossRefGoogle Scholar
  25. 25.
    X. D. Xing, H. Andreas, X. Y. Kuang, M. Ju, C. Lu, Y. Y. Jin, X. X. Xia, and G. Maroulis (2016). SCI REP-UK 9, 19656.CrossRefGoogle Scholar
  26. 26.
    X. X. Xia, X. Y. Kuang, C. Lu, Y. Y. Jin, X. D. Xing, G. Merino, and A. Hermann (2016). J. Phys. Chem. A 120, 7947.CrossRefGoogle Scholar
  27. 27.
    W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Inorg. Chem. 56, 1241.CrossRefGoogle Scholar
  28. 28.
    J. J. Wang, G. L. Sun, P. Kong, W. G. Sun, C. Lu, F. Peng, and X. Y. Kuang (2017). Phys. Chem. Chem. Phys. 19, 16206.CrossRefGoogle Scholar
  29. 29.
    J. Meng, G. L. Sun, X. Y. Kuang, C. Lu, Y. S. Zhu, and Y. Y. Yeung (2017). J. Mater. Chem. C. 5, 7174.CrossRefGoogle Scholar
  30. 30.
    A. D. Mclean and G. S. Chandler (1980). J. Chem. Phys. 72, 5639.CrossRefGoogle Scholar
  31. 31.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 (Gaussian, Wallingford, CT, 2004).Google Scholar
  32. 32.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B 46, 6671.CrossRefGoogle Scholar
  33. 33.
    I. Papai and M. Castro (1997). Chem. Phys. Lett. 267, 551.CrossRefGoogle Scholar
  34. 34.
    W. Humphrey, A. Dalke, and K. Schulten (1996). J. Mol. Graph 14, 33.CrossRefGoogle Scholar
  35. 35.
    T. Lu and F. W. Chen (2012). J. Comput. Chem. 33, 580.CrossRefGoogle Scholar
  36. 36.
    H. Alyar, Z. Kantarci, M. Bahat, and E. Kasap (2007). J. Mol. Struct. 516, 834.Google Scholar
  37. 37.
    J. Guan, M. E. Casida, A. M. Koster, and D. R. Salahub (2014). Phys. Rev. B 52, 1995.Google Scholar
  38. 38.
    G. D. Zhou and L. Y. Duan Structural Chemistry Basis (Peking University Press, Beijing, 2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cheng-Gang Li
    • 1
    • 2
  • Jin-Cheng Zhou
    • 1
  • Yan-Fei Hu
    • 3
    • 4
  • Bao-Zeng Ren
    • 2
  • Jun-Tao Bai
    • 1
  • Xian-Ke Hu
    • 1
  • Wen Yang
    • 1
  1. 1.College of Physics and Electronic Engineering, Quantum Materials Research CenterZhengzhou Normal UniversityZhengzhouChina
  2. 2.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouChina
  3. 3.School of Physics and Electronic EngineeringSichuan University of Science and EngineeringZigongChina
  4. 4.National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations