Skip to main content
Log in

Prediction of Second-Order Nonlinear Optical Properties of D–π–A Compounds Containing Novel Fluorene Derivatives: A Promising Route to Giant Hyperpolarizabilities

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Herein, first attempt has been made to utilize fluorene-based dye-sensitized solar cell (DSSCs) dye JK-201 as potential nonlinear optical (NLO) material and for the theoretical designing of novel NLO chromophores JK-D1–JK-D12. DFT/TDDFT calculations were performed to compute the effect of π-linkers and acceptors-steered modulation on electronic, photophysical and NLO properties of JK-201 and JK-D1–JK-D12. Results illustrate that computed λmax (484.74 nm) and experimentally calculated λmax (481 nm) of JK-201 was found in good agreement. Maximum red shifted absorption spectrum was observed in JK-D12 with 599.38 nm. JK-D1–JK-D12 showed narrow energy gap and broader absorption spectrum as compared to JK-201. NBO analysis confirmed the formation of charge separation state due to robust range of electrons/charge transfer from donor to acceptor via π-bridge. Giant NLO response was observed in all compounds. Particularly, JK-D12 displayed surprisingly large 〈α〉 and βtot computed 1376.74 (a.u.) and 405,731.84 (a.u.) respectively. Although literature is flooded with D–π–A compounds investigated for their DSSCs properties, but research reports on their NLO properties and utilization as NLO materials are completely deserted. Our research will open new horizons to explore DSSCs materials for NLO applications. This theoretical framework also exposed that fluorene-substituted chromophores are excellent NLO candidates for modern hi-tech applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-linear optical properties of matter (Springer, New York, 2006).

    Book  Google Scholar 

  2. M. Akram, M. Adeel, M. Khalid, M. N. Tahir, M. U. Khan, M. A. Asghar, M. A. Ullah, and M. Iqbal (2018). J. Mol. Struct. 1160, 129.

    Article  CAS  Google Scholar 

  3. M. S. Ahmad, M. Khalid, M. A. Shaheen, M. N. Tahir, M. U. Khan, A. A. C. Braga, and H. A. Shad (2017). J. Phys. Chem. Solids 115, 265.

    Article  CAS  Google Scholar 

  4. M. Shahid, M. Salim, M. Khalid, M. N. Tahir, M. U. Khan, and A. A. C. Braga (2018). J. Mol. Struct. 1161, 66.

    Article  CAS  Google Scholar 

  5. Z. Peng and L. Yu (1994). Macromolecules 27, (9), 2638.

    Article  CAS  Google Scholar 

  6. N. Tsutsumi, M. Morishima, and W. Sakai (1998). Macromolecules 31, 7764.

    Article  CAS  Google Scholar 

  7. E. M. Breitung, C.-F. Shu, and R. J. McMahon (2000). J. Am. Chem. Soc. 122, (6), 1154.

    Article  CAS  Google Scholar 

  8. P. S. Halasyamani and W. Zhang, Inorganic Materials for UV and Deep-UV Nonlinear-Optical Applications (ACS Publications, Washington, 2017).

    Book  Google Scholar 

  9. B. Zhang, G. Shi, Z. Yang, F. Zhang, and S. Pan (2017). Angew. Chem. Int. Ed. 56, (14), 3916.

    Article  CAS  Google Scholar 

  10. S. Yamashita (2012). J. Lightwave Technol. 30, (4), 427.

    Article  CAS  Google Scholar 

  11. L. Guo, Z. Guo, and X. Li (2018). J. Mater. Sci.: Mater. Electron. 29, (3), 2577.

    CAS  Google Scholar 

  12. R. D. Fonseca, M. G. Vivas, D. L. Silva, G. Eucat, Y. Bretonnière, C. Andraud, L. De Boni, and C. R. Mendonça (2018). J. Phys. Chem. C 122, (3), 1770.

    Article  CAS  Google Scholar 

  13. P.-H. Sung and T.-F. Hsu (1998). Polymer 39, (6–7), 1453.

    Article  CAS  Google Scholar 

  14. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, and P. Sullivan (2006). Nat. Mater. 5, (9), 703.

    Article  CAS  PubMed  Google Scholar 

  15. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

    Google Scholar 

  16. D. S. Chemla Nonlinear Optical Properties of Organic Molecules and Crystals (Elsevier, Amsterdam, 2012).

    Google Scholar 

  17. B. Nagarajan, S. Kushwaha, R. Elumalai, S. Mandal, K. Ramanujam, and D. Raghavachari (2017). J. Mater. Chem. A 5, (21), 10289.

    Article  CAS  Google Scholar 

  18. X. Dai, B. Dong, M. Ren, and W. Lin (2018). J. Mater. Chem. B 6, 381.

  19. P. Ferdowsi, Y. Saygili, W. Zhang, T. Edvinson, L. Kavan, J. Mokhtari, S. M. Zakeeruddin, M. Grätzel, and A. Hagfeldt (2018). ChemSusChem 11, (2), 494.

    Article  CAS  PubMed  Google Scholar 

  20. S. Yamada, J. Bessho, H. Nakasato, and O. Tsutsumi (2018). Dyes Pigments 150, 89.

    Article  CAS  Google Scholar 

  21. V. Srinivasan, M. Panneerselvam, N. Pavithra, S. Anandan, K. Sundaravel, M. Jaccob, and A. Kathiravan (2017). J. Photochem. Photobiol., A 332, 453.

    Article  CAS  Google Scholar 

  22. S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, and P. Bäuerle (2012). Adv. Funct. Mater. 22, (6), 1291.

    Article  CAS  Google Scholar 

  23. M. R. S. A. Janjua, M. U. Khan, B. Bashir, M. A. Iqbal, Y. Song, S. A. R. Naqvi, and Z. A. Khan (2012). Comput. Theor. Chem. 994, 34.

    Article  CAS  Google Scholar 

  24. M. R. S. A. Janjua, M. Amin, M. Ali, B. Bashir, M. U. Khan, M. A. Iqbal, W. Guan, L. Yan, and Z. M. Su (2012). Eur. J. Inorg. Chem. 2012, (4), 705.

    Article  CAS  Google Scholar 

  25. M. R. S. A. Janjua, Z.-M. Su, W. Guan, C.-G. Liu, L.-K. Yan, P. Song, and G. Maheen (2010). Aust. J. Chem. 63, (5), 836.

    Article  CAS  Google Scholar 

  26. M. R. S. A. Janjua, S. Jamil, A. Mahmood, A. Zafar, M. Haroon, and H. N. Bhatti (2015). Aust. J. Chem. 68, (10), 1502.

    Article  CAS  Google Scholar 

  27. M. R. S. A. Janjua (2012). Inorg. Chem. 51, (21), 11306.

    Article  CAS  PubMed  Google Scholar 

  28. M. R. S. A. Janjua, S. Jamil, T. Ahmad, Z. Yang, A. Mahmood, and S. Pan (2014). Comput. Theor. Chem. 1033, 6.

    Article  CAS  Google Scholar 

  29. M. Haroon, R. Mahmood, and M. R. S. A. Janjua (2017). J. Cluster Sci. 28, (5), 2693.

    Article  CAS  Google Scholar 

  30. M. R. S. A. Janjua, Z. H. Yamani, S. Jamil, A. Mahmood, I. Ahmad, M. Haroon, M. H. Tahir, Z. Yang, and S. Pan (2016). Aust. J. Chem. 69, (4), 467.

    Article  CAS  Google Scholar 

  31. R. Mahmood, M. R. S. A. Janjua, and S. Jamil (2017). J. Cluster Sci. 28, (6), 3175.

    Article  CAS  Google Scholar 

  32. R. N. Almogati, S. G. Aziz, and R. Hilal (2017). J. Theor. Comput. Chem. 16, 1750018.

    Article  CAS  Google Scholar 

  33. R. Hilal, S. G. Aziz, O. I. Osman, and J.-L. Bredas (2017). Mol. Simul. 43, (18), 1523.

    Article  CAS  Google Scholar 

  34. M. U. Khan, M. Khalid, M. Ibrahim, A. A. C. Braga, M. Safdar, A. A. Al-Saadi, and M. R. S. A. Janjua (2018). J. Phys. Chem. C 122, (7), 4009.

    Article  CAS  Google Scholar 

  35. M. U. Khan, M. Ibrahim, M. Khalid, M. S. Qureshi, T. Gulzar, K. M. Zia, A. A. Al-Saadi, and M. R. S. A. Janjua (2018). Chem. Phys. Lett. 715, 222.

  36. S. Paek, H. Choi, H. Choi, C.-W. Lee, M.-S. Kang, K. Song, M. K. Nazeeruddin, and J. Ko (2010). J. Phys. Chem. C 114, (34), 14646.

    Article  CAS  Google Scholar 

  37. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, B. E., K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. J. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, D. 0109, Revision D. 01 (Gaussian, Inc., Wallingford, CT 2009).

  38. Z. Yang, C. Liu, C. Shao, X. Zeng, and D. Cao (2016). Nanotechnology 27, (26), 265701.

    Article  PubMed  CAS  Google Scholar 

  39. Z. Yang, C. Shao, and D. Cao (2015). RSC Adv. 5, (29), 22892.

    Article  CAS  Google Scholar 

  40. J. Autschbach (2009). ChemPhysChem 10, (11), 1757.

    Article  CAS  PubMed  Google Scholar 

  41. A. Dreuw and M. Head-Gordon (2005). Chem. Rev. 105, (11), 4009.

    Article  CAS  PubMed  Google Scholar 

  42. T. Yanai, D. P. Tew, and N. C. Handy (2004). Chem. Phys. Lett. 393, (1), 51.

    Article  CAS  Google Scholar 

  43. V. Barone and M. Cossi (1998). J. Phys. Chem. A 102, (11), 1995.

    Article  CAS  Google Scholar 

  44. A. Karakas, A. Elmali, and H. Unver (2007). Spectrochim. Acta. A Mol. Biomol. Spectrosc. 68, (3), 567.

    Article  PubMed  CAS  Google Scholar 

  45. Z. Yang, C. Liu, C. Shao, C. Lin, and Y. Liu (2015). J. Phys. Chem. C 119, (38), 21852.

    Article  CAS  Google Scholar 

  46. S. Gunasekaran, R. A. Balaji, S. Kumeresan, G. Anand, and S. Srinivasan (2008). Can. J. Anal. Sci. Spectrosc. 53, 149.

    CAS  Google Scholar 

  47. M. Adeel, A. A. Braga, M. N. Tahir, F. Haq, M. Khalid, and M. A. Halim (2017). J. Mol. Struct. 1131, 136.

    Article  CAS  Google Scholar 

  48. M. N. Arshad, A.-A. M. Al-Dies, A. M. Asiri, M. Khalid, A. S. Birinji, K. A. Al-Amry, and A. A. Braga (2017). J. Mol. Struct. 1141, 142.

    Article  CAS  Google Scholar 

  49. M. N. Tahir, M. Khalid, A. Islam, S. M. A. Mashhadi, and A. A. Braga (2017). J. Mol. Struct. 1127, 766.

    Article  CAS  Google Scholar 

  50. S. S. Amiri, S. Makarem, H. Ahmar, and S. Ashenagar (2016). J. Mol. Struct. 1119, 18.

    Article  CAS  Google Scholar 

  51. R. G. Parr, L. V. Szentpaly, and S. Liu (1999). Electrophilicity index. J. Am. Chem. Soc. 121, (9), 1922.

    Article  CAS  Google Scholar 

  52. P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, (6), 2065.

    Article  CAS  PubMed  Google Scholar 

  53. M. Szafran, A. Komasa, and E. Bartoszak-Adamska (2007). J. Mol. Struct. 827, (1), 101.

    Article  CAS  Google Scholar 

  54. C. James, A. A. Raj, R. Reghunathan, V. Jayakumar, and I. H. Joe (2006). J. Raman Spectrosc. 37, (12), 1381.

    Article  CAS  Google Scholar 

  55. C. Qin and A. E. Clark (2007). Chem. Phys. Lett. 438, (1), 26.

    Article  CAS  Google Scholar 

  56. B. S. Mendis and K. N. de Silva (2004). J. Mol. Struct: Theochem. 678, (1), 31.

    Article  CAS  Google Scholar 

  57. D. R. Kanis, M. A. Ratner, and T. J. Marks (1994). Chem. Rev. 94, (1), 195.

    Article  CAS  Google Scholar 

  58. H. S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductors, vol. 1 (Academic Press, Cambridge, 2001).

    Google Scholar 

  59. J.-L. Oudar and D. Chemla (1977). J. Chem. Phys. 66, (6), 2664.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ataualpa A. C. Braga, (Grants # 2011/07895-8, 2015/01491-3 and 2014/25770-6) is thankful to Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support. AACB (Grant 309715/2017-2) also thanks the Brazilian National Research Council (CNPq) for financial support and fellowships. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Ibrahim or Muhammad Khalid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Associated Content

Optimized Cartesian coordinates of our studied compounds are available in supporting information file.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Ibrahim, M., Khalid, M. et al. Prediction of Second-Order Nonlinear Optical Properties of D–π–A Compounds Containing Novel Fluorene Derivatives: A Promising Route to Giant Hyperpolarizabilities. J Clust Sci 30, 415–430 (2019). https://doi.org/10.1007/s10876-018-01489-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-01489-1

Keywords

Navigation