Abstract
Herein, first attempt has been made to utilize fluorene-based dye-sensitized solar cell (DSSCs) dye JK-201 as potential nonlinear optical (NLO) material and for the theoretical designing of novel NLO chromophores JK-D1–JK-D12. DFT/TDDFT calculations were performed to compute the effect of π-linkers and acceptors-steered modulation on electronic, photophysical and NLO properties of JK-201 and JK-D1–JK-D12. Results illustrate that computed λmax (484.74 nm) and experimentally calculated λmax (481 nm) of JK-201 was found in good agreement. Maximum red shifted absorption spectrum was observed in JK-D12 with 599.38 nm. JK-D1–JK-D12 showed narrow energy gap and broader absorption spectrum as compared to JK-201. NBO analysis confirmed the formation of charge separation state due to robust range of electrons/charge transfer from donor to acceptor via π-bridge. Giant NLO response was observed in all compounds. Particularly, JK-D12 displayed surprisingly large 〈α〉 and βtot computed 1376.74 (a.u.) and 405,731.84 (a.u.) respectively. Although literature is flooded with D–π–A compounds investigated for their DSSCs properties, but research reports on their NLO properties and utilization as NLO materials are completely deserted. Our research will open new horizons to explore DSSCs materials for NLO applications. This theoretical framework also exposed that fluorene-substituted chromophores are excellent NLO candidates for modern hi-tech applications.
Graphical Abstract
Similar content being viewed by others
References
M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-linear optical properties of matter (Springer, New York, 2006).
M. Akram, M. Adeel, M. Khalid, M. N. Tahir, M. U. Khan, M. A. Asghar, M. A. Ullah, and M. Iqbal (2018). J. Mol. Struct. 1160, 129.
M. S. Ahmad, M. Khalid, M. A. Shaheen, M. N. Tahir, M. U. Khan, A. A. C. Braga, and H. A. Shad (2017). J. Phys. Chem. Solids 115, 265.
M. Shahid, M. Salim, M. Khalid, M. N. Tahir, M. U. Khan, and A. A. C. Braga (2018). J. Mol. Struct. 1161, 66.
Z. Peng and L. Yu (1994). Macromolecules 27, (9), 2638.
N. Tsutsumi, M. Morishima, and W. Sakai (1998). Macromolecules 31, 7764.
E. M. Breitung, C.-F. Shu, and R. J. McMahon (2000). J. Am. Chem. Soc. 122, (6), 1154.
P. S. Halasyamani and W. Zhang, Inorganic Materials for UV and Deep-UV Nonlinear-Optical Applications (ACS Publications, Washington, 2017).
B. Zhang, G. Shi, Z. Yang, F. Zhang, and S. Pan (2017). Angew. Chem. Int. Ed. 56, (14), 3916.
S. Yamashita (2012). J. Lightwave Technol. 30, (4), 427.
L. Guo, Z. Guo, and X. Li (2018). J. Mater. Sci.: Mater. Electron. 29, (3), 2577.
R. D. Fonseca, M. G. Vivas, D. L. Silva, G. Eucat, Y. Bretonnière, C. Andraud, L. De Boni, and C. R. Mendonça (2018). J. Phys. Chem. C 122, (3), 1770.
P.-H. Sung and T.-F. Hsu (1998). Polymer 39, (6–7), 1453.
M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, and P. Sullivan (2006). Nat. Mater. 5, (9), 703.
P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
D. S. Chemla Nonlinear Optical Properties of Organic Molecules and Crystals (Elsevier, Amsterdam, 2012).
B. Nagarajan, S. Kushwaha, R. Elumalai, S. Mandal, K. Ramanujam, and D. Raghavachari (2017). J. Mater. Chem. A 5, (21), 10289.
X. Dai, B. Dong, M. Ren, and W. Lin (2018). J. Mater. Chem. B 6, 381.
P. Ferdowsi, Y. Saygili, W. Zhang, T. Edvinson, L. Kavan, J. Mokhtari, S. M. Zakeeruddin, M. Grätzel, and A. Hagfeldt (2018). ChemSusChem 11, (2), 494.
S. Yamada, J. Bessho, H. Nakasato, and O. Tsutsumi (2018). Dyes Pigments 150, 89.
V. Srinivasan, M. Panneerselvam, N. Pavithra, S. Anandan, K. Sundaravel, M. Jaccob, and A. Kathiravan (2017). J. Photochem. Photobiol., A 332, 453.
S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, and P. Bäuerle (2012). Adv. Funct. Mater. 22, (6), 1291.
M. R. S. A. Janjua, M. U. Khan, B. Bashir, M. A. Iqbal, Y. Song, S. A. R. Naqvi, and Z. A. Khan (2012). Comput. Theor. Chem. 994, 34.
M. R. S. A. Janjua, M. Amin, M. Ali, B. Bashir, M. U. Khan, M. A. Iqbal, W. Guan, L. Yan, and Z. M. Su (2012). Eur. J. Inorg. Chem. 2012, (4), 705.
M. R. S. A. Janjua, Z.-M. Su, W. Guan, C.-G. Liu, L.-K. Yan, P. Song, and G. Maheen (2010). Aust. J. Chem. 63, (5), 836.
M. R. S. A. Janjua, S. Jamil, A. Mahmood, A. Zafar, M. Haroon, and H. N. Bhatti (2015). Aust. J. Chem. 68, (10), 1502.
M. R. S. A. Janjua (2012). Inorg. Chem. 51, (21), 11306.
M. R. S. A. Janjua, S. Jamil, T. Ahmad, Z. Yang, A. Mahmood, and S. Pan (2014). Comput. Theor. Chem. 1033, 6.
M. Haroon, R. Mahmood, and M. R. S. A. Janjua (2017). J. Cluster Sci. 28, (5), 2693.
M. R. S. A. Janjua, Z. H. Yamani, S. Jamil, A. Mahmood, I. Ahmad, M. Haroon, M. H. Tahir, Z. Yang, and S. Pan (2016). Aust. J. Chem. 69, (4), 467.
R. Mahmood, M. R. S. A. Janjua, and S. Jamil (2017). J. Cluster Sci. 28, (6), 3175.
R. N. Almogati, S. G. Aziz, and R. Hilal (2017). J. Theor. Comput. Chem. 16, 1750018.
R. Hilal, S. G. Aziz, O. I. Osman, and J.-L. Bredas (2017). Mol. Simul. 43, (18), 1523.
M. U. Khan, M. Khalid, M. Ibrahim, A. A. C. Braga, M. Safdar, A. A. Al-Saadi, and M. R. S. A. Janjua (2018). J. Phys. Chem. C 122, (7), 4009.
M. U. Khan, M. Ibrahim, M. Khalid, M. S. Qureshi, T. Gulzar, K. M. Zia, A. A. Al-Saadi, and M. R. S. A. Janjua (2018). Chem. Phys. Lett. 715, 222.
S. Paek, H. Choi, H. Choi, C.-W. Lee, M.-S. Kang, K. Song, M. K. Nazeeruddin, and J. Ko (2010). J. Phys. Chem. C 114, (34), 14646.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, B. E., K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. J. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, D. 0109, Revision D. 01 (Gaussian, Inc., Wallingford, CT 2009).
Z. Yang, C. Liu, C. Shao, X. Zeng, and D. Cao (2016). Nanotechnology 27, (26), 265701.
Z. Yang, C. Shao, and D. Cao (2015). RSC Adv. 5, (29), 22892.
J. Autschbach (2009). ChemPhysChem 10, (11), 1757.
A. Dreuw and M. Head-Gordon (2005). Chem. Rev. 105, (11), 4009.
T. Yanai, D. P. Tew, and N. C. Handy (2004). Chem. Phys. Lett. 393, (1), 51.
V. Barone and M. Cossi (1998). J. Phys. Chem. A 102, (11), 1995.
A. Karakas, A. Elmali, and H. Unver (2007). Spectrochim. Acta. A Mol. Biomol. Spectrosc. 68, (3), 567.
Z. Yang, C. Liu, C. Shao, C. Lin, and Y. Liu (2015). J. Phys. Chem. C 119, (38), 21852.
S. Gunasekaran, R. A. Balaji, S. Kumeresan, G. Anand, and S. Srinivasan (2008). Can. J. Anal. Sci. Spectrosc. 53, 149.
M. Adeel, A. A. Braga, M. N. Tahir, F. Haq, M. Khalid, and M. A. Halim (2017). J. Mol. Struct. 1131, 136.
M. N. Arshad, A.-A. M. Al-Dies, A. M. Asiri, M. Khalid, A. S. Birinji, K. A. Al-Amry, and A. A. Braga (2017). J. Mol. Struct. 1141, 142.
M. N. Tahir, M. Khalid, A. Islam, S. M. A. Mashhadi, and A. A. Braga (2017). J. Mol. Struct. 1127, 766.
S. S. Amiri, S. Makarem, H. Ahmar, and S. Ashenagar (2016). J. Mol. Struct. 1119, 18.
R. G. Parr, L. V. Szentpaly, and S. Liu (1999). Electrophilicity index. J. Am. Chem. Soc. 121, (9), 1922.
P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, (6), 2065.
M. Szafran, A. Komasa, and E. Bartoszak-Adamska (2007). J. Mol. Struct. 827, (1), 101.
C. James, A. A. Raj, R. Reghunathan, V. Jayakumar, and I. H. Joe (2006). J. Raman Spectrosc. 37, (12), 1381.
C. Qin and A. E. Clark (2007). Chem. Phys. Lett. 438, (1), 26.
B. S. Mendis and K. N. de Silva (2004). J. Mol. Struct: Theochem. 678, (1), 31.
D. R. Kanis, M. A. Ratner, and T. J. Marks (1994). Chem. Rev. 94, (1), 195.
H. S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductors, vol. 1 (Academic Press, Cambridge, 2001).
J.-L. Oudar and D. Chemla (1977). J. Chem. Phys. 66, (6), 2664.
Acknowledgments
Ataualpa A. C. Braga, (Grants # 2011/07895-8, 2015/01491-3 and 2014/25770-6) is thankful to Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support. AACB (Grant 309715/2017-2) also thanks the Brazilian National Research Council (CNPq) for financial support and fellowships. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interests.
Associated Content
Optimized Cartesian coordinates of our studied compounds are available in supporting information file.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Khan, M.U., Ibrahim, M., Khalid, M. et al. Prediction of Second-Order Nonlinear Optical Properties of D–π–A Compounds Containing Novel Fluorene Derivatives: A Promising Route to Giant Hyperpolarizabilities. J Clust Sci 30, 415–430 (2019). https://doi.org/10.1007/s10876-018-01489-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-018-01489-1