Photocatalytic Oxidation Based on Modified Titanium Dioxide with Reduced Graphene Oxide and CdSe/CdS as Nanohybrid Materials

Abstract

Photocatalytic activity of TiO2 nanoparticles in the visible light region was enhanced. TiO2–CdSe and TiO2–CdSe/CdS nanohybrids were supported on the reduced graphene oxide. These nanohybrid materials were applied as photocatalyst toward oxidation of aromatic alcohols under a mild condition and the molecular oxygen as oxidant. A plausible mechanism for the photocatalytic oxidation was also proposed. Desired nanohybrids were obtained via in situ fixation of CdSe/CdS on the surface of nanosheets of reduced graphene oxide (rGO). Finally, it was modified by TiO2 sol nanoparticles through a hydrothermal method. The obtained nanomaterials, were characterized by SEM, TEM imaging, XRD, EDAX, DRS and XPS analyses. The size of nanohybrids materials were distributed mostly in a narrow range of 50–65 and 60–75 nm for TiO2–rGO–CdSe and TiO2–rGO–CdSe/CdS, respectively. These photocatalysts showed high catalytic activity under visible light irradiation in a short reaction time and even higher selectivity rather than UV irradiation. The yield of catalytic oxidation increased at least 25–30% for TiO2–CdSe/CdS on rGO, which could be related to its higher light sensitivity and lower energy band gap. The photocatalysts were recycled and reused 8 times without significant loss of their activities due to their stability under visible light.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

References

  1. 1.

    A. Mills and S. Le Hunte (1997). J. Photochem. Photobiol. A Chem. 108, 1.

    CAS  Article  Google Scholar 

  2. 2.

    A. Maldotti, A. Molinari, and R. Amadelli (2002). Chem. Rev. 102, 3811.

    CAS  Article  Google Scholar 

  3. 3.

    Y. Yin, Z. Jin, and F. Hou (2007). Nanotechnology 18, 495608.

    Article  Google Scholar 

  4. 4.

    M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto (2002). Chem. Mater. 14, 4714.

    CAS  Article  Google Scholar 

  5. 5.

    A. Kubacka, M. Fernández-García, and G. Colón (2012). Chem. Rev. 112, 1555.

    CAS  Article  Google Scholar 

  6. 6.

    Z. Zhang, W. Wang, L. Wang, S. Sun, and A. C. S. Appl (2012). Mater. Interfaces 4, 593.

    CAS  Article  Google Scholar 

  7. 7.

    J. Yan, G. Wu, N. Guan, and L. Li (2014). Appl. Catal. B Environ. 152–153, 280.

    Article  Google Scholar 

  8. 8.

    W. Feng, G. Wu, L. Li, and N. Guan (2011). Green Chem. 13, 3265.

    CAS  Article  Google Scholar 

  9. 9.

    C. Chen, W. Ma, and J. Zhao (2010). Chem. Soc. Rev. 39, 4206.

    CAS  Article  Google Scholar 

  10. 10.

    V. Augugliaro and L. Palmisano (2010). ChemSusChem 3, 1135.

    CAS  Article  Google Scholar 

  11. 11.

    C. L. Choi, K. J. Koski, S. Sivasankar, and P. Alivisatos (2009). Nano Lett. 9, 3544.

    CAS  Article  Google Scholar 

  12. 12.

    R. A. M. Hikmet, P. T. K. Chin, D. V. Talapin, and H. Weller (2005). Adv. Mater. 17, 1436.

    CAS  Article  Google Scholar 

  13. 13.

    P. M. A. Farias, B. S. Santos, A. De Thomaz, R. Ferreira, F. D. Menezes, C. L. Cesar, and A. Fontes (2008). J. Phys. Chem. B 112, 2734.

    CAS  Article  Google Scholar 

  14. 14.

    M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani (2010). Nanoscale 2, 931.

    CAS  Article  Google Scholar 

  15. 15.

    W.-C. Oh, J.-H. Son, K. Zhang, Z.-D. Meng, F.-J. Zhang, and M.-L. Chen (2009). J. Korean Ceram. Soc. 46, 1.

    CAS  Article  Google Scholar 

  16. 16.

    Z.-D. Meng, L. Zhu, J.-G. Choi, M.-L. Chen, and W.-C. Oh (2011). J. Mater. Chem. 21, 7596.

    CAS  Article  Google Scholar 

  17. 17.

    M. Zhang, C. Chen, W. Ma, and J. Zhao (2008). Angew. Chemie 120, 9876.

    Article  Google Scholar 

  18. 18.

    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga (2001). Science 293, 269.

    CAS  Article  Google Scholar 

  19. 19.

    H. Kisch, S. Sakthivel, M. Janczarek, and D. Mitoraj (2007). J. Phys. Chem. C 111, 11445.

    CAS  Article  Google Scholar 

  20. 20.

    J. C. Yu, G. Li, X. Wang, X. Hu, C. W. Leung, and Z. Zhang (2006). Chem. Commun. (Camb). 1, 2717.

    Article  Google Scholar 

  21. 21.

    L. Peng, T. Xie, Y. Lu, H. Fan, and D. Wang (2010). Phys. Chem. Chem. Phys. 12, 8033.

    CAS  Article  Google Scholar 

  22. 22.

    N. Zhang, S. Liu, X. Fu, and Y.-J. Xu (2012). J. Mater. Chem. 22, 5042.

    CAS  Article  Google Scholar 

  23. 23.

    V. Subramanian, E. E. Wolf, and P. V. Kamat (2004). J. Am. Chem. Soc. 126, 4943.

    CAS  Article  Google Scholar 

  24. 24.

    Q. Wang, X. Yang, L. Chi, and M. Cui (2013). Electrochim. Acta 91, 330.

    CAS  Article  Google Scholar 

  25. 25.

    J. Zhang, J. Yang, M. Liu, G. Li, W. Li, S. Gao, and Y. Luo (2014). J. Electrochem. Soc. 161, D55.

    CAS  Article  Google Scholar 

  26. 26.

    B. Jiang, X. Yang, X. Li, D. Zhang, J. Zhu, and G. Li (2013). J. Sol-Gel Sci. Technol. 66, 504.

    CAS  Article  Google Scholar 

  27. 27.

    H. M. Choi, I. A. Ji, and J. H. Bang (2013). Bull. Korean Chem. Soc. 34, 713.

    CAS  Article  Google Scholar 

  28. 28.

    D. N. Tafen, R. Long, and O. V. Prezhdo (2014). Nano Lett. 14, 1790.

    CAS  Article  Google Scholar 

  29. 29.

    Y. Hassan, C. Chuang, Y. Kobayashi, N. Coombs, S. Gorantla, G. A. Botton, M. A. Winnik, C. Burda, and G. D. Scholes (2014). J. Phys. Chem. C 118, 3347.

    CAS  Article  Google Scholar 

  30. 30.

    L. Su, J. Lv, H. Wang, L. Liu, G. Xu, D. Wang, Z. Zheng, and Y. Wu (2013). Catal. Letters 144, 553.

    Article  Google Scholar 

  31. 31.

    D. V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller (2003). Nano Lett. 3, 1677.

    CAS  Article  Google Scholar 

  32. 32.

    I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat (2006). J. Am. Chem. Soc. 128, 2385.

    CAS  Article  Google Scholar 

  33. 33.

    S. Zhuo, M. Shao, and S.-T. Lee (2012). ACS Nano 6, 1059.

    CAS  Article  Google Scholar 

  34. 34.

    M. Zhu, P. Chen, and M. Liu (2011). ACS Nano 5, 4529.

    CAS  Article  Google Scholar 

  35. 35.

    P. V. Kamat (2011). J. Phys. Chem. Lett. 2, 242.

    CAS  Article  Google Scholar 

  36. 36.

    P. V. Kamat (2010). J. Phys. Chem. Lett. 1, 520.

    CAS  Article  Google Scholar 

  37. 37.

    I. Y. Kim, J. M. Lee, T. W. Kim, H. N. Kim, H.-I. Kim, W. Choi, and S.-J. Hwang (2012). Small 8, 1038.

    CAS  Article  Google Scholar 

  38. 38.

    B. Jiang, C. Tian, Q. Pan, Z. Jiang, J. Wang, W. Yan, and H. Fu (2011). J. Phys. Chem. C 115, 23718.

    CAS  Article  Google Scholar 

  39. 39.

    Y. A. Attia, C. V. Vázquez, and Y. M. A. Mohamed (2017). Res. Chem. Intermed. 43, 203.

    CAS  Article  Google Scholar 

  40. 40.

    M. Alfè, D. Spasiano, V. Gargiulo, G. Vitiello, R. Di Capua, and R. Marotta (2014). Appl. Catal. A Gen. 487, 91.

    Article  Google Scholar 

  41. 41.

    R. Wittenberg, M. A. Pradera, and J. A. Navio (1997). Langmuir 7463, 2373.

    Article  Google Scholar 

  42. 42.

    P. Du, J. Moulijn, and G. Mul (2006). J. Catal. 238, 342.

    CAS  Article  Google Scholar 

  43. 43.

    U. R. Pillai and E. Sahle-Demessie (2002). J. Catal. 211, 434.

    CAS  Article  Google Scholar 

  44. 44.

    T. Ghosh, K.-Y. Cho, K. Ullah, V. Nikam, C.-Y. Park, Z.-D. Meng, and W.-C. Oh (2013). J. Ind. Eng. Chem. 19, 797.

    CAS  Article  Google Scholar 

  45. 45.

    Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, and J. G. Hou (2010). ACS Nano 4, 3033.

    CAS  Article  Google Scholar 

  46. 46.

    X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu, and L. Liu (2010). Adv. Mater. 22, 638.

    CAS  Article  Google Scholar 

  47. 47.

    C. X. Guo, H. Bin Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, and C. M. Li (2010). Angew. Chem. Int. Ed. Engl. 49, 3014.

    CAS  Article  Google Scholar 

  48. 48.

    W. S. Hummers Jr. and R. E. Offeman (1958). J. Am. Chem. Soc. 80, 1339.

    CAS  Article  Google Scholar 

  49. 49.

    M.-Q. Yang, N. Zhang, Y.-J. Xu, and A. C. S. Appl (2013). Mater. Interfaces 5, 1156.

    CAS  Article  Google Scholar 

  50. 50.

    J. Si, Y. Liu, S. Chang, D. Wu, B. Tian, and J. Zhang (2017). Res. Chem. Intermed. 43, 2067.

    CAS  Article  Google Scholar 

  51. 51.

    S. Bai and X. Shen (2012). RSC Adv. 2, 64.

    CAS  Article  Google Scholar 

  52. 52.

    X. Huang, X. Qi, F. Boey, and H. Zhang (2012). Chem. Soc. Rev. 41, 666.

    CAS  Article  Google Scholar 

  53. 53.

    L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, X. Han, and A. C. S. Appl (2013). Mater. Interfaces 5, 3085.

    CAS  Article  Google Scholar 

  54. 54.

    O. Carp, C. L. Huisman, and A. Reller (2004). Prog. Solid State Chem. 32, 33.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The financial support rendered by the University of Kurdistan is gratefully acknowledged. We also would like to thank Dr. Mehdi Irani for his theoretical calculations and Dr. Elham Safaei for her advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sajjad Mohebbi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1639 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini, F., Mohebbi, S. Photocatalytic Oxidation Based on Modified Titanium Dioxide with Reduced Graphene Oxide and CdSe/CdS as Nanohybrid Materials. J Clust Sci 29, 289–300 (2018). https://doi.org/10.1007/s10876-017-1326-6

Download citation

Keywords

  • Photooxidation
  • Hydrothermal synthesis
  • Nanostructures
  • Catalysis
  • Oxidation