Advertisement

Journal of Cluster Science

, Volume 29, Issue 2, pp 289–300 | Cite as

Photocatalytic Oxidation Based on Modified Titanium Dioxide with Reduced Graphene Oxide and CdSe/CdS as Nanohybrid Materials

  • Farnaz Hosseini
  • Sajjad MohebbiEmail author
Original Paper

Abstract

Photocatalytic activity of TiO2 nanoparticles in the visible light region was enhanced. TiO2–CdSe and TiO2–CdSe/CdS nanohybrids were supported on the reduced graphene oxide. These nanohybrid materials were applied as photocatalyst toward oxidation of aromatic alcohols under a mild condition and the molecular oxygen as oxidant. A plausible mechanism for the photocatalytic oxidation was also proposed. Desired nanohybrids were obtained via in situ fixation of CdSe/CdS on the surface of nanosheets of reduced graphene oxide (rGO). Finally, it was modified by TiO2 sol nanoparticles through a hydrothermal method. The obtained nanomaterials, were characterized by SEM, TEM imaging, XRD, EDAX, DRS and XPS analyses. The size of nanohybrids materials were distributed mostly in a narrow range of 50–65 and 60–75 nm for TiO2–rGO–CdSe and TiO2–rGO–CdSe/CdS, respectively. These photocatalysts showed high catalytic activity under visible light irradiation in a short reaction time and even higher selectivity rather than UV irradiation. The yield of catalytic oxidation increased at least 25–30% for TiO2–CdSe/CdS on rGO, which could be related to its higher light sensitivity and lower energy band gap. The photocatalysts were recycled and reused 8 times without significant loss of their activities due to their stability under visible light.

Keywords

Photooxidation Hydrothermal synthesis Nanostructures Catalysis Oxidation 

Notes

Acknowledgements

The financial support rendered by the University of Kurdistan is gratefully acknowledged. We also would like to thank Dr. Mehdi Irani for his theoretical calculations and Dr. Elham Safaei for her advice.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2017_1326_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1639 kb)

References

  1. 1.
    A. Mills and S. Le Hunte (1997). J. Photochem. Photobiol. A Chem. 108, 1.CrossRefGoogle Scholar
  2. 2.
    A. Maldotti, A. Molinari, and R. Amadelli (2002). Chem. Rev. 102, 3811.CrossRefGoogle Scholar
  3. 3.
    Y. Yin, Z. Jin, and F. Hou (2007). Nanotechnology 18, 495608.CrossRefGoogle Scholar
  4. 4.
    M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto (2002). Chem. Mater. 14, 4714.CrossRefGoogle Scholar
  5. 5.
    A. Kubacka, M. Fernández-García, and G. Colón (2012). Chem. Rev. 112, 1555.CrossRefGoogle Scholar
  6. 6.
    Z. Zhang, W. Wang, L. Wang, S. Sun, and A. C. S. Appl (2012). Mater. Interfaces 4, 593.CrossRefGoogle Scholar
  7. 7.
    J. Yan, G. Wu, N. Guan, and L. Li (2014). Appl. Catal. B Environ. 152–153, 280.CrossRefGoogle Scholar
  8. 8.
    W. Feng, G. Wu, L. Li, and N. Guan (2011). Green Chem. 13, 3265.CrossRefGoogle Scholar
  9. 9.
    C. Chen, W. Ma, and J. Zhao (2010). Chem. Soc. Rev. 39, 4206.CrossRefGoogle Scholar
  10. 10.
    V. Augugliaro and L. Palmisano (2010). ChemSusChem 3, 1135.CrossRefGoogle Scholar
  11. 11.
    C. L. Choi, K. J. Koski, S. Sivasankar, and P. Alivisatos (2009). Nano Lett. 9, 3544.CrossRefGoogle Scholar
  12. 12.
    R. A. M. Hikmet, P. T. K. Chin, D. V. Talapin, and H. Weller (2005). Adv. Mater. 17, 1436.CrossRefGoogle Scholar
  13. 13.
    P. M. A. Farias, B. S. Santos, A. De Thomaz, R. Ferreira, F. D. Menezes, C. L. Cesar, and A. Fontes (2008). J. Phys. Chem. B 112, 2734.CrossRefGoogle Scholar
  14. 14.
    M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani (2010). Nanoscale 2, 931.CrossRefGoogle Scholar
  15. 15.
    W.-C. Oh, J.-H. Son, K. Zhang, Z.-D. Meng, F.-J. Zhang, and M.-L. Chen (2009). J. Korean Ceram. Soc. 46, 1.CrossRefGoogle Scholar
  16. 16.
    Z.-D. Meng, L. Zhu, J.-G. Choi, M.-L. Chen, and W.-C. Oh (2011). J. Mater. Chem. 21, 7596.CrossRefGoogle Scholar
  17. 17.
    M. Zhang, C. Chen, W. Ma, and J. Zhao (2008). Angew. Chemie 120, 9876.CrossRefGoogle Scholar
  18. 18.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga (2001). Science 293, 269.CrossRefGoogle Scholar
  19. 19.
    H. Kisch, S. Sakthivel, M. Janczarek, and D. Mitoraj (2007). J. Phys. Chem. C 111, 11445.CrossRefGoogle Scholar
  20. 20.
    J. C. Yu, G. Li, X. Wang, X. Hu, C. W. Leung, and Z. Zhang (2006). Chem. Commun. (Camb). 1, 2717.CrossRefGoogle Scholar
  21. 21.
    L. Peng, T. Xie, Y. Lu, H. Fan, and D. Wang (2010). Phys. Chem. Chem. Phys. 12, 8033.CrossRefGoogle Scholar
  22. 22.
    N. Zhang, S. Liu, X. Fu, and Y.-J. Xu (2012). J. Mater. Chem. 22, 5042.CrossRefGoogle Scholar
  23. 23.
    V. Subramanian, E. E. Wolf, and P. V. Kamat (2004). J. Am. Chem. Soc. 126, 4943.CrossRefGoogle Scholar
  24. 24.
    Q. Wang, X. Yang, L. Chi, and M. Cui (2013). Electrochim. Acta 91, 330.CrossRefGoogle Scholar
  25. 25.
    J. Zhang, J. Yang, M. Liu, G. Li, W. Li, S. Gao, and Y. Luo (2014). J. Electrochem. Soc. 161, D55.CrossRefGoogle Scholar
  26. 26.
    B. Jiang, X. Yang, X. Li, D. Zhang, J. Zhu, and G. Li (2013). J. Sol-Gel Sci. Technol. 66, 504.CrossRefGoogle Scholar
  27. 27.
    H. M. Choi, I. A. Ji, and J. H. Bang (2013). Bull. Korean Chem. Soc. 34, 713.CrossRefGoogle Scholar
  28. 28.
    D. N. Tafen, R. Long, and O. V. Prezhdo (2014). Nano Lett. 14, 1790.CrossRefGoogle Scholar
  29. 29.
    Y. Hassan, C. Chuang, Y. Kobayashi, N. Coombs, S. Gorantla, G. A. Botton, M. A. Winnik, C. Burda, and G. D. Scholes (2014). J. Phys. Chem. C 118, 3347.CrossRefGoogle Scholar
  30. 30.
    L. Su, J. Lv, H. Wang, L. Liu, G. Xu, D. Wang, Z. Zheng, and Y. Wu (2013). Catal. Letters 144, 553.CrossRefGoogle Scholar
  31. 31.
    D. V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller (2003). Nano Lett. 3, 1677.CrossRefGoogle Scholar
  32. 32.
    I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat (2006). J. Am. Chem. Soc. 128, 2385.CrossRefGoogle Scholar
  33. 33.
    S. Zhuo, M. Shao, and S.-T. Lee (2012). ACS Nano 6, 1059.CrossRefGoogle Scholar
  34. 34.
    M. Zhu, P. Chen, and M. Liu (2011). ACS Nano 5, 4529.CrossRefGoogle Scholar
  35. 35.
    P. V. Kamat (2011). J. Phys. Chem. Lett. 2, 242.CrossRefGoogle Scholar
  36. 36.
    P. V. Kamat (2010). J. Phys. Chem. Lett. 1, 520.CrossRefGoogle Scholar
  37. 37.
    I. Y. Kim, J. M. Lee, T. W. Kim, H. N. Kim, H.-I. Kim, W. Choi, and S.-J. Hwang (2012). Small 8, 1038.CrossRefGoogle Scholar
  38. 38.
    B. Jiang, C. Tian, Q. Pan, Z. Jiang, J. Wang, W. Yan, and H. Fu (2011). J. Phys. Chem. C 115, 23718.CrossRefGoogle Scholar
  39. 39.
    Y. A. Attia, C. V. Vázquez, and Y. M. A. Mohamed (2017). Res. Chem. Intermed. 43, 203.CrossRefGoogle Scholar
  40. 40.
    M. Alfè, D. Spasiano, V. Gargiulo, G. Vitiello, R. Di Capua, and R. Marotta (2014). Appl. Catal. A Gen. 487, 91.CrossRefGoogle Scholar
  41. 41.
    R. Wittenberg, M. A. Pradera, and J. A. Navio (1997). Langmuir 7463, 2373.CrossRefGoogle Scholar
  42. 42.
    P. Du, J. Moulijn, and G. Mul (2006). J. Catal. 238, 342.CrossRefGoogle Scholar
  43. 43.
    U. R. Pillai and E. Sahle-Demessie (2002). J. Catal. 211, 434.CrossRefGoogle Scholar
  44. 44.
    T. Ghosh, K.-Y. Cho, K. Ullah, V. Nikam, C.-Y. Park, Z.-D. Meng, and W.-C. Oh (2013). J. Ind. Eng. Chem. 19, 797.CrossRefGoogle Scholar
  45. 45.
    Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, and J. G. Hou (2010). ACS Nano 4, 3033.CrossRefGoogle Scholar
  46. 46.
    X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu, and L. Liu (2010). Adv. Mater. 22, 638.CrossRefGoogle Scholar
  47. 47.
    C. X. Guo, H. Bin Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, and C. M. Li (2010). Angew. Chem. Int. Ed. Engl. 49, 3014.CrossRefGoogle Scholar
  48. 48.
    W. S. Hummers Jr. and R. E. Offeman (1958). J. Am. Chem. Soc. 80, 1339.CrossRefGoogle Scholar
  49. 49.
    M.-Q. Yang, N. Zhang, Y.-J. Xu, and A. C. S. Appl (2013). Mater. Interfaces 5, 1156.CrossRefGoogle Scholar
  50. 50.
    J. Si, Y. Liu, S. Chang, D. Wu, B. Tian, and J. Zhang (2017). Res. Chem. Intermed. 43, 2067.CrossRefGoogle Scholar
  51. 51.
    S. Bai and X. Shen (2012). RSC Adv. 2, 64.CrossRefGoogle Scholar
  52. 52.
    X. Huang, X. Qi, F. Boey, and H. Zhang (2012). Chem. Soc. Rev. 41, 666.CrossRefGoogle Scholar
  53. 53.
    L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, X. Han, and A. C. S. Appl (2013). Mater. Interfaces 5, 3085.CrossRefGoogle Scholar
  54. 54.
    O. Carp, C. L. Huisman, and A. Reller (2004). Prog. Solid State Chem. 32, 33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KurdistanSanandajIran

Personalised recommendations