Skip to main content
Log in

Experimental and Theoretical Study on Cation–π Interaction of the Potassium Cation with [2.2.2]Paracyclophane

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

By using electrospray ionization mass spectrometry, it was proven experimentally that the univalent potassium cation (K+) forms with [2.2.2]paracyclophane (C24H24) the cationic cluster [K(C24H24)]+. Further, applying quantum chemical DFT calculations, the most probable structure of the [K(C24H24)]+ complex was derived. In the resulting complex with a symmetry very close to C 3, the “central” cation K+, fully located in the cavity of the parent [2.2.2]paracyclophane ligand, is coordinated to all three benzene rings of [2.2.2]paracyclophane via cation–π interaction. Finally, the interaction energy, E(int), of the considered cation–π complex [K(C24H24)]+ was found to be − 614.8 kJ mol−1, confirming the formation of this fascinating complex species as well. It means that the [2.2.2]paracyclophane ligand can be considered as an effective receptor for the potassium cation in the gas phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. J. L. Atwood, J. E. D. Davis, D. D. MacNicol and F. Vögtle (eds.) Comprehensive Supramolecular Chemistry, vol. 1 (Pergamon, Oxford, 1996).

    Google Scholar 

  2. F. Vögtle, S. Ibach, M. Nieger, C. Chartroux, T. Krüger, H. Stephan, and K. Gloe (1997). Chem. Commun. 1809.

  3. J. L. Pierre, P. Baret, P. Chautemps, and M. Armand (1981). J. Am. Chem. Soc. 103, 2986.

    Article  CAS  Google Scholar 

  4. J. Gross, G. Harder, A. Siepen, J. Harren, F. Vögtle, H. Stephan, K. Gloe, B. Ahlers, K. Cammann, and K. Rissanen (1996). Chem. Eur. J. 2, 1585.

    Article  CAS  Google Scholar 

  5. E. G. Buchanan, J. C. Dean, T. S. Zwier, and E. L. Sibert III (2013). J. Chem. Phys. 138, 064308.

    Article  Google Scholar 

  6. A. O. Ortolan, G. F. Caramori, G. Frenking, and A. Muñoz-Castro (2015). New J. Chem. 39, 9963.

    Article  CAS  Google Scholar 

  7. D. A. Dougherty (1996). Science 271, 163.

    Article  CAS  Google Scholar 

  8. J. C. Ma and D. A. Dougherty (1997). Chem. Rev. 97, 1303.

    Article  CAS  Google Scholar 

  9. K. S. Kim, P. Tarakeshwar, and J. Y. Lee (2000). Chem. Rev. 100, 4145.

    Article  CAS  Google Scholar 

  10. N. Zacharias and D. A. Dougherty (2002). Trends Pharm. Sci. 23, 281.

    Article  CAS  Google Scholar 

  11. G. W. Gokel (2003). Chem. Commun. 2847.

  12. D. Schröder, H. Schwarz, J. Hrušák, and P. Pyykkö (1998). Inorg. Chem. 37, 624.

    Article  Google Scholar 

  13. A. Gapeev, C. N. Yang, S. J. Klippenstein, and R. C. Dunbar (2000). J. Phys. Chem. A 104, 3246.

    Article  CAS  Google Scholar 

  14. S. Tsuzuki, M. Yoshida, T. Uchimaru, and M. Mikami (2001). J. Phys. Chem. A 105, 769.

    Article  CAS  Google Scholar 

  15. H. Huang and M. T. Rodgers (2002). J. Phys. Chem. A 106, 4277.

    Article  CAS  Google Scholar 

  16. Y. Mo, G. Subramanian, J. Gao, and D. M. Ferguson (2002). J. Am. Chem. Soc. 124, 4832.

    Article  CAS  Google Scholar 

  17. A. S. Reddy and G. N. Sastry (2005). J. Phys. Chem. A 109, 8893.

    Article  CAS  Google Scholar 

  18. D. Vijay and G. N. Sastry (2008). Phys. Chem. Chem. Phys. 10, 582.

    Article  CAS  Google Scholar 

  19. K. Sakurai, T. Mizuno, H. Hiroaki, K. Gohda, J. Oku, and T. Tanaka (2005). Angew. Chem. Int. Ed. 44, 6180.

    Article  CAS  Google Scholar 

  20. C. Cohen-Addad, P. Baret, P. Chautemps, and J. L. Pierre (1983). Acta Crystallogr. C C39, 1346.

    Article  CAS  Google Scholar 

  21. P. G. Jones, P. Bubenitschek, F. Heirtzler, and H. Hopf (1996). Acta Crystallogr. C C52, 1380.

    Article  CAS  Google Scholar 

  22. E. Makrlík, S. Böhm, D. Sýkora, B. Klepetářová, P. Vaňura, and M. Polášek (2015). Chem. Phys. Lett. 642, 39.

    Article  Google Scholar 

  23. R. G. Pearson (1968). J. Chem. Educ. 45, 581.

    Article  CAS  Google Scholar 

  24. J.-D. Chai and M. Head-Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615.

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox (2009). Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford, CT).

    Google Scholar 

  26. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.

    Article  CAS  Google Scholar 

  27. J. Kříž, J. Dybal, E. Makrlík, P. Vaňura, and B. A. Moyer (2011). J. Phys. Chem. B 115, 7578.

    Article  Google Scholar 

  28. E. Makrlík, P. Toman, and P. Vaňura (2014). Monatsh. Chem. 145, 551.

    Article  Google Scholar 

  29. E. Makrlík, P. Vaňura, and R. Rathore (2015). Monatsh. Chem. 146, 521.

    Article  Google Scholar 

  30. E. Makrlík, S. Böhm, P. Vaňura, and P. Ruzza (2015). Mol. Phys. 113, 1472.

    Article  Google Scholar 

  31. B. Klepetářová, E. Makrlík, J. Jaklová Dytrtová, S. Böhm, P. Vaňura, and J. Storch (2015). J. Mol. Struct. 1097, 124.

    Article  Google Scholar 

  32. E. Makrlík, M. Bureš, P. Vaňura, and Z. Asfari (2016). J. Mol. Liquids 218, 473.

    Article  Google Scholar 

  33. L. Turi and J. J. Dannenberg (1993). J. Phys. Chem. 97, 2488.

    Article  CAS  Google Scholar 

  34. J. E. Rode and J. C. Dobrowolski (2002). Chem. Phys. Lett. 360, 123.

    Article  CAS  Google Scholar 

  35. E. Lopéz, J. M. Lucas, J. de Andrés, M. Alberti, J. M. Bofill, D. Bassi, and A. Aguilar (2011). Phys. Chem. Chem. Phys. 13, 15977.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 entitled “Environmental Aspects of Sustainable Development of Society”, as well as by the Czech Ministry of Education, Youth, and Sports (Project MSMT No.: 20/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makrlík, E., Sýkora, D., Böhm, S. et al. Experimental and Theoretical Study on Cation–π Interaction of the Potassium Cation with [2.2.2]Paracyclophane. J Clust Sci 29, 21–25 (2018). https://doi.org/10.1007/s10876-017-1314-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1314-x

Keywords

Navigation