Skip to main content
Log in

Boosting BeONT Reactivity with HCN by Calcium and Magnesium Doping: A DFT Investigation of Electronic Structure, AIM, NMR, NQR and NBO Analysis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Adsorption of the HCN molecule is very important in environment and industrial applications. The BeONT may be good candidate for HCN capture because of large surface. Unfortunately, BeONT shows limited HCN detection. Therefore, we investigate the possibility of HCN adsorption on Ca and Mg-doped BeONT by density functional theory calculations. It was found that HCN adsorption on doped nanotube has relatively higher adsorption energy as compared with the perfect one. Furthermore, there exists a strong adsorption between HCN molecule and doped nanotubes, which exhibited more active interaction and larger net charge transfer than that of pristine nanotube. As well as, calculated geometrical parameters and electronic properties for studied systems indicate that the Ca-doped BeONT and Mg-doped BeONT present high sensitivity to HCN, compared with the pristine BeONT. Theoretical results reveal that the adsorption of the HCN on the doped nanotube is influenced on the electronic conductance of the doped-BeONT. Therefore, Ca and Mg-doped nanotube can be considered as promising sensor for detecting HCN molecule. According to NBO analysis, electron flow is spontaneous from doped nanotube to HCN molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. L. Blank, M. V. Roloff, R. D. Short, S. M. Schuengel, and W. E. Ribelin (2002). Toxicol. Lett. 18, (Suppl. 1), 136.

    Google Scholar 

  2. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai (2000). Science 287, 622–625.

    Article  CAS  Google Scholar 

  3. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl (2000). Science 287, 1801–1804.

    Article  CAS  Google Scholar 

  4. H. Raissi and F. Mollania (2014). Eur. J. Pharm. Sci. 56, 37–54.

    Article  CAS  Google Scholar 

  5. S. Duman, A. Sütlü, S. Bagci, H. M. Tütüncü, and G. P. Srivastava (2009). J. Appl. Phys. 105, 033719-1–033719-8.

    Article  Google Scholar 

  6. P. B. Sorokin, A. S. Fedorov, and L. A. Chernozatonskii (2006). Phys. Solid State 48, 398–401.

    Article  CAS  Google Scholar 

  7. B. Baumeier, P. Krüger, and J. Pollmann (2007). Phys. Rev. B 76, 085407.1–085407.8.

    Google Scholar 

  8. M. A. Gorbunova, I. R. Shen, Y. N. Makurin, V. V. Ivanovskaya, and A. L. Ivanovskii (2008). Physica E 41, 164.

    Article  CAS  Google Scholar 

  9. A. D. Becke (1993). J. Chem. Phys. 98, 5648–5652.

    Article  CAS  Google Scholar 

  10. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785–789.

    Article  CAS  Google Scholar 

  11. S. B. Boys and F. Bernardi (1970). Mol. Phys. 19, 553–566.

    Article  CAS  Google Scholar 

  12. T. A. Koopmans (1934). Physica 1, 104–113.

    Article  Google Scholar 

  13. R. G. Pearson (1985). J. Am. Chem. Soc. 107, 6801–6806.

    Article  CAS  Google Scholar 

  14. R. G. Parr and P. K. Chattaraj (1991). J. Am. Chem. Soc. 113, 1854–1855.

    Article  CAS  Google Scholar 

  15. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899–926.

    Article  CAS  Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision C. 02, Gaussian, Inc.: Wallingford, CT (2004).

  17. R. F. W. Bader, A. Streitwieser, A. Neuhaus, K. F. Laidig, and P. Speers (1996). J. Am. Chem. Soc. 118, 4959–4965.

    Article  CAS  Google Scholar 

  18. F. Biegler- König and J. Schönbohm (2002). J. Comput. Chem. 23, 1489–1494.

    Article  Google Scholar 

  19. A. W. Ehlers, E. J. Baerends, and K. Lammertsma (2002). J. Am. Chem. Soc. 124, 2831–2838.

    Article  CAS  Google Scholar 

  20. K. K. Pandey and G. Frenking (2004). Eur. J. Inorg. Chem. 2004, 4388–4395.

    Article  Google Scholar 

  21. M. K. Cyrański, T. M. Krygowski, A. R. Katritzky, and P. V. R. Schleyer (2002). J. Org. Chem. 67, 1333–1338.

    Article  Google Scholar 

  22. P. Pyykkö (2001). Mol. Phys. 99, 1617–1629.

    Article  Google Scholar 

  23. M. Marvi, H. Raissi, and H. Ghiassi (2016). Struct. Chem.. doi:10.1007/s11224-015-0585-9.

    Google Scholar 

  24. M. Moradi, M. Noei, and A. Ahmadi Peyghan (2013). Mol. Phys. 111, (21), 3320–3326.

    Article  CAS  Google Scholar 

  25. A. Ahmadi Peyghan, S. F. Rastegar, and N. L. Hadipour (2014). Phys. Lett. A. 378, (30), 2184–2190.

    Article  Google Scholar 

  26. N. L. Hadipour, A. Ahmadi Peyghan, H. Soleymanabadi (2015). J. Phys. Chem. C. 9, 6398–6404.

    Article  Google Scholar 

  27. M. Eslami, V. Vahabi, and A. Ahmadi Peyghan (2016). Physica E. 76, 6–11.

    Article  CAS  Google Scholar 

  28. M. Samadizadeh, A. Ahmadi Peyghan, and S. F. Rastegar (2015). Chin. Chem. Lett. 26, (8), 1042–1045.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We perform some calculations with Saffron HPC cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Ghiassi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiassi, H., Raissi, H. & Marvi, M. Boosting BeONT Reactivity with HCN by Calcium and Magnesium Doping: A DFT Investigation of Electronic Structure, AIM, NMR, NQR and NBO Analysis. J Clust Sci 29, 101–110 (2018). https://doi.org/10.1007/s10876-017-1310-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1310-1

Keywords

Navigation