Skip to main content
Log in

Monomeric and Oligomeric Metal Selenide Complexes from Structural Transformation of the Tetraselenotungstate Anion

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Treatment of W(CO)6 with Na2Sex (x = 2–4) at 90 °C, prepared from heating selenium powder and sodium in DMF solution, afforded (Et4N)2[WSe4] (1) in a relatively high yield. Interaction of 1 with one equiv. [Me3NCH2Ph]Br in MeCN gave a cation exchanging product (Et4N)(Me3Ph2CH2N)[WSe4] (2) in a quantitative yield. Reaction of 1 with excess grey selenium in DMF produced monomeric polyselenide complex (Et4N)2[WO(Se4)2] (3). Treatment of 1 with equal equiv. anhydrous FeCl2 and excess PPh3 in DMF gave a dimeric complex (Fe(DMF)6)[W2Se4(μ-Se)2] (4). Similar reaction using MnCl2·4H2O salt easily gave rise to isolation of a trimeric complex (Mn(DMF)6)[WO(DMF)(μ-WSe4)2] (5). Reaction of 1 with anhydrous ZnCl2 in a mixed DMF/MeCN at 40 °C afforded a mixed-metal selenide complex (Et4N)2[Zn(μ-WSe4)2] (6). All complexes are well characterized by electronic, infrared, mass and NMR spectroscopies in this paper, and the solid-state structures of complexes 16 have been also established by X-ray crystallography.

Graphical Abstract

Interactions of tetraselenotungstate anion [WSe4]2− and first-row transition metal ions (Fe2+, Mn2+ and Zn2+) in the heating dimethylformide resulted in isolation of monomeric and oligomeric metal selenide complexes (Fe(DMF)6)[W2Se4(μ-Se)2] (Mn(DMF)6)[WO(DMF)(μ-WSe4)2] and (Et4N)2[Zn(μ-WSe4)2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. G. Morales-Guio and X. Hu (2014). Acc. Chem. Res. 47, 2671.

    Article  CAS  Google Scholar 

  2. S. M. Tan and M. Pumera (2016). ACS Appl. Mater. Inter. 8, 3948.

    Article  CAS  Google Scholar 

  3. E. Ahmed and A. Rothenberger (2014). Micropor. Mesopor. Mat. 199, 74.

    Article  CAS  Google Scholar 

  4. T. Alphazan, A. Bonduelle-Skrzypczak, C. Legens, A. S. Gay, Z. Boudene, M. Girleanu, O. Ersen, C. Coperet, and P. Raybaud (2014). ACS Catal. 4, 4320.

    Article  CAS  Google Scholar 

  5. J. Kibsgaard, T. F. Jaramillo, and F. Besenbacher (2014). Nature Chem. 6, 248.

    Article  CAS  Google Scholar 

  6. G. Alonso, J. Espino, G. Berhault, L. Alvarez, and J. L. Rico (2004). Appl. Catal. A 266, 29.

    Article  CAS  Google Scholar 

  7. G. Alonso and R. R. Chianelli (2004). J. Catal. 221, 657.

    Article  CAS  Google Scholar 

  8. S. Shi, in D. M. Roundhill and J. P. Jr. Fackler (eds.), Optoelectronic Properties of Inorganic Compounds (Plenum Press, New York, 1998), pp 55-105.

  9. Q. F. Zhang, W. H. Leung, and X. Q. Xin (2002). Coord. Chem. Rev. 224, 35.

    Article  CAS  Google Scholar 

  10. Y. Y. Niu, H. G. Zheng, H. W. Hou, and X. Q. Xin (2004). Coord. Chem. Rev. 248, 169.

    Article  CAS  Google Scholar 

  11. R. W. M. Wardle, C.-N. Chau, and J. A. Ibers (1987). J. Am. Chem. Soc. 109, 1859.

    Article  CAS  Google Scholar 

  12. R. W. M. Wardle, C. H. Mahler, C.-N. Chau, and J. A. Ibers (1988). Inorg. Chem. 27, 2790.

    Article  CAS  Google Scholar 

  13. G.-C. Guo and T. C. W. Mak (1998). Inorg. Chem. 37, 6538.

    Article  CAS  Google Scholar 

  14. C. G. Nguyen, A. Adeogun, M. Afzaal, M. A. Malik, and P. O’brien (2006). Chem. Commun. 2182.

  15. T. Okamura, K. Taniuchi, K. Lee, H. Yamamoto, N. Ueyama, and A. Nakamura (2006). Inorg. Chem. 45, 9374.

    Article  CAS  Google Scholar 

  16. Q. F. Zhang, Z. Yu, J. Ding, Y. Song, A. Rothenberger, D. Fenske, and W. H. Leung (2006). Inorg. Chem. 45, 5187.

    Article  CAS  Google Scholar 

  17. Q. F. Zhang, J. Ding, Z. Yu, Y. Song, A. Rothenberger, D. Fenske, and W. H. Leung (2006). Inorg. Chem. 45, 8638.

    Article  CAS  Google Scholar 

  18. R. W. M. Wardle, S. Bumit, C.-N. Chau, and J. A. Ibers (1988). Inorg. Chem. 27, 1747.

    Article  CAS  Google Scholar 

  19. S. C. O’Neal and J. W. Kolis (1988). J. Am. Chem. Soc. 110, 1971.

    Article  Google Scholar 

  20. K. Polychronopoulou, C. D. Malliakas, J. He, and M. G. Kanatzidis (2012). Chem. Mater. 24, 3380.

    Article  CAS  Google Scholar 

  21. G. M. Sheldrick, in SHELXTL-97 Version 5.1, Software Reference Manual (Bruker AXS, Inc., Madison, Wisconsin, USA, 1997).

  22. A. Müller and E. Diemann (1969). Chem. Ber. 102, 945.

    Article  Google Scholar 

  23. V. Lenher and A. G. Fruehan (1927). J. Am. Chem. Soc. 49, 3076.

    Article  Google Scholar 

  24. Q. F. Zhang, M. C. Hong, W. P. Su, R. Cao, and H. Q. Liu (1997). Polyhedron 16, 1433.

    Article  CAS  Google Scholar 

  25. Q.-F. Zhang, K.-K. Lau, W.-Y. Wong, and W.-H. Leung (2001). Inorg. Chim. Acta 325, 125.

    Article  CAS  Google Scholar 

  26. Y. Lu, M. A. Ansari, and J. A. Ibers (1989). Inorg. Chem. 28, 4049.

    Article  CAS  Google Scholar 

  27. A. Müller, W. Hellmann, C. Römer, M. Römer, H. Bögge, R. Jostes, and U. Schimanski (1984). Inorg. Chim. Acta 83, L75.

    Article  Google Scholar 

  28. M. A. Ansari, C.-N. Chau, C. H. Mahler, and J. A. Ibers (1989). Inorg. Chem. 28, 650.

    Article  CAS  Google Scholar 

  29. A. Müller, E. Diemann, and H. H. Heinsen (1971). Chem. Ber. 104, 975.

    Article  Google Scholar 

  30. K. P. Callahan and P. A. Piliero (1980). Inorg. Chem. 19, 2619.

    Article  CAS  Google Scholar 

  31. C. J. Crossland, I. R. Evans, and J. S. O. Evans (2008). Dalton Trans. 1597.

  32. C. C. Christuk, M. A. Ansari, and J. A. Ibers (1992). Inorg. Chem. 31, 4365.

    Article  CAS  Google Scholar 

  33. H. Yu, S.-J. Ji, Q.-F. Xu, Q. Liu, J.-X. Chen, and J.-P. Lang (2002). Chin. J. Struc. Chem. 21, 174.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of China (90922008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, G., Qian, TT., Shi, HT. et al. Monomeric and Oligomeric Metal Selenide Complexes from Structural Transformation of the Tetraselenotungstate Anion. J Clust Sci 29, 83–91 (2018). https://doi.org/10.1007/s10876-017-1308-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1308-8

Keywords

Navigation