Skip to main content

Advertisement

Log in

DFT Study on Planar (CaO) n Rings (n = 1–5) and Their Hydrogen Storage Behavior: Ca–O Versus Mg–O Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, the results of DFT-based calculations on the structures, stabilities, vibrational, electronic, and hydrogen storage behavior of (CaO) n rings are presented and discussed systematically. The equilibrium ring structures of Ca–O clusters for n = 2–5 are found to be stable. Vibrational frequencies and IR intensities further support the enhanced stability with an increase in the size of Ca–O clusters. The HOMO–LUMO surfaces and their derived parameters are used to explain the electronic properties of the titled systems. For efficient hydrogen storage, metals especially, the transition metals with large cohesive energy (CE) suffer from the problem of cohesion as it is expected that the adsorption energies of metal decorated absorbents should be larger than the CEs of metal. In order to avoid this, hydrogen adsorbed directly on the absorbents is preferred. Due to relatively smaller CEs of the s-block metals, hydrogen adsorbs directly on the cluster which indeed solves the problem of cohesion. The hydrogen storage capacity of (CaO) n clusters, considering hydrogen adsorption on (CaO)4 and (CaO)5 rings is studied. The outcomes appear to give meaningful and satisfactory results. Thus the present work is expected to lead further the applications of small clusters for easy, efficient, and eco-friendly hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Jain, V. Kumar, M. Sluiter, and Y. Kawazoe (2006). Comput. Mater. Sci. 36, 171–175.

    Article  CAS  Google Scholar 

  2. P. N. Kapoor, A. K. Bhagi, R. S. Mulukutla, and K. J. Klabunde Dekker Encyclopedia of Nanoscience and Technology (Marcel Dekker, New York, 2004).

    Google Scholar 

  3. A. Khaleel, P. N. Kapoor, and K. J. Klabunde (1999). NanoStruct. Mat. 11, 459–468.

    Article  CAS  Google Scholar 

  4. R. C. Whited, C. J. Flaten, and W. C. Walker (1973). Solid State Commun. 13, 1903–1905.

    Article  CAS  Google Scholar 

  5. I. S. Elfimov, S. Yunoki, and G. A. Sawatzky (2002). Phys. Rev. Lett. 89, 216403–216407.

    Article  CAS  Google Scholar 

  6. B. K. Olga, L. Isabelle, and V. Alexander (1997). Chem. Mater. 9, 2468–2480.

    Article  Google Scholar 

  7. O. Koper, X. L. Yong, and J. K. Kenneth (1993). Chem. Mater. 5, 500–505.

    Article  CAS  Google Scholar 

  8. W. A. Saunders (1988). Phys. Rev. B 37, 6583–6586.

    Article  CAS  Google Scholar 

  9. T. P. Martin and T. Bergmann (1989). J. Chem. Phys. 90, 6664–6667.

    Article  CAS  Google Scholar 

  10. P. J. Ziemann and A. W. Castleman (1992). J. Phys. Chem. 96, 4271–4276.

    Article  CAS  Google Scholar 

  11. F. Bawa and I. Panas (2002). Phys. Chem. Chem. Phys. 4, 103–108.

    Article  CAS  Google Scholar 

  12. A. Vibok and G. J. Halasz (2001). Phys. Chem. Chem. Phys. 3, 3042–3047.

    Article  Google Scholar 

  13. J. L. C. Rowsell and O. M. Yaghi (2006). J. Am. Chem. Soc. 128, 1304–1315.

    Article  CAS  Google Scholar 

  14. A. M. Seayad and D. M. Antonelli (2004). Adv. Mater. 16, 765–777.

    Article  CAS  Google Scholar 

  15. S. K. Bhatia and A. L. Myers (2006). Langmuir 22, 1688–1700.

    Article  CAS  Google Scholar 

  16. Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe (2005). J. Am. Chem. Soc. 127, 14582–14583.

    Article  CAS  Google Scholar 

  17. Q. Sun, P. Jena, Q. Wang, and M. Marquez (2006). J. Am. Chem. Soc. 128, 9741–9745.

    Article  CAS  Google Scholar 

  18. J. Zhou, Q. Wang, Q. Sun, and P. Jena (2011). J. Phys. Chem. C 115, 6136–6140.

    Article  CAS  Google Scholar 

  19. T. Hussain, B. Pathak, T. A. Maark, C. M. Araujo, R. H. Scheicher, and R. Ahuja (2011). Europhys. Lett. 96, 27013–27016.

    Article  Google Scholar 

  20. H. Dodziuk and G. Dolgonos (2002). Chem. Phys. Lett. 356, 79–83.

    Article  CAS  Google Scholar 

  21. M. Shiraishi, T. Takenobu, and M. Ata (2003). Chem. Phys. Lett. 367, 633–636.

    Article  CAS  Google Scholar 

  22. H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata, and Y. Murakami (2003). Appl. Phys. Lett. 82, 1105–1107.

    Article  CAS  Google Scholar 

  23. C. Li, J. Li, F. Wu, S. S. Li, J. B. Xia, and L. W. Wang (2011). J. Phys. Chem. C 115, 23221–23225.

    Article  CAS  Google Scholar 

  24. J. Li, Z. Hu, and G. Yang (2012). Chem. Phys. 392, 16–20.

    Article  CAS  Google Scholar 

  25. H. Y. Wu, X. Fan, J. L. Kuo, and W. Q. Deng (2011). J. Phys. Chem. C 115, 9241–9249.

    Article  CAS  Google Scholar 

  26. Y. Wang, X. Li, F. Wang, B. Xu, J. Zhang, Q. Sun, and Y. Jia (2013). Chem. Phys. 415, 26–30.

    Article  CAS  Google Scholar 

  27. Y. S. Wang, Y. Ji, M. Li, P. F. Yuan, Q. Sun, Y. Jia (2011). J. Appl. Phys. 110, 094311/1-6.

  28. A. K. Srivastava and N. Misra (2015). Mol. Simu. 42, 208–214.

    Article  Google Scholar 

  29. A. D. Becke (1993). J. Chem. Phys. 98, 5648–5652.

    Article  CAS  Google Scholar 

  30. A. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785–789.

    Article  CAS  Google Scholar 

  31. Y. Zhao and D. G. Truhlar (2006). J. Chem. Phys. 125, 194101.

    Article  Google Scholar 

  32. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Acc. 120, 215.

    Article  CAS  Google Scholar 

  33. S. H. Mehdi, R. M. Ghalib, S. Awasthi, S. F. Alshahateet, R. Hashim, O. Sulaiman, and S. K. Pandey (2017). ChemistrySelect 2, 1–13.

    Article  Google Scholar 

  34. S. K. Pandey, M. F. Khan, S. Awasthi, R. Sangwan, and S. Jain (2017). Aus. J. Chem. 70, 328–337.

    Article  CAS  Google Scholar 

  35. F. Bawa and I. Pavas (2001). Phys. Chem. Chem. Phys. 3, 3042–3047.

    Article  CAS  Google Scholar 

  36. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, Rev B.01 (Gaussian Inc, Wallingford, 2010).

    Google Scholar 

  37. K. P. Huber and G. Herzberg Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules (van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  38. A. K. Srivastava and N. Misra (1047). Comput. Theor. Chem. 2014, 1–5.

    Google Scholar 

  39. E. Kadossov and U. Burghaus (2008). J. Phys. Chem. C 112, 7390–7400.

    Article  CAS  Google Scholar 

  40. M. Samadizadeh, A. A. Peyghan, and S. F. Rastegar (2016). Main Group Chem. 15, 107–116.

    CAS  Google Scholar 

  41. M. Nayebzadeh, A. A. Peyghan, and H. Soleymanabadi (2014). Physica E 62, 48–54.

    Article  CAS  Google Scholar 

  42. J. Kakemam and A. A. Peyghan (2013). Comput. Mat. Sci. 79, 352–355.

    Article  CAS  Google Scholar 

  43. R. Shinde and M. Tayade (2014). J. Phys. Chem. C 118, 17200–17204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. K. Srivastava acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi, India for a research fellowship [Grant No. 09/107(0359)/2012-EMR-I]. The authors acknowledge the Department of Science and Technology, Government of India, New Delhi, for providing the Computational Facilities in the Department of Chemistry, Indian Institute of Technology Kanpur, India. We thank to the reviewers for their valuable comments and suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvesh Kumar Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K., Misra, N. & Pandey, S.K. DFT Study on Planar (CaO) n Rings (n = 1–5) and Their Hydrogen Storage Behavior: Ca–O Versus Mg–O Clusters. J Clust Sci 29, 57–65 (2018). https://doi.org/10.1007/s10876-017-1306-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1306-x

Keywords

Navigation