Skip to main content
Log in

Expedient Catalytic Access to Knöevenagel Condensation Using Sr3Al2O6 Nanocomposite in Room Temperature

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Sr3Al2O6 nanocomposite was prepared by sol gel method using aluminum isopropoxide, strontium nitrate, acetylacetone and polyethylene glycol as template, followed by calcination at 900 °C. This nanocomposite was characterized by various techniques including X-ray powder diffraction, infrared spectroscopy, elemental analysis, scanning transmission microscope and transmission electron microscope. It was found that Sr3Al2O6 nanocomposite successfully catalyzes the Knöevenagel condensation of aromatic aldehydes with malononitrile in room temperature in ethanol. Expedient access to the corresponding Knöevenagel adducts in moderate to high yields within 6 min is promising. The recovered catalyst was reused for three times without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk (1989). J. Electrochem. Soc. 136, 2119.

    Article  CAS  Google Scholar 

  2. T. Katsumata, K. Sasajima, T. Nabae, S. Komuro, and T. Morikawa (1998). J. Am. Ceram. Soc. 81, 413.

    Article  CAS  Google Scholar 

  3. Y. Xu, Y. He, and X. Yaun (2007). Powder Technol. 172, 99.

    Article  CAS  Google Scholar 

  4. B. C. Chakoumakos, G. A. Lager, and J. A. Fernandez-Baca (1992). Acta Crystallogr. C 48, 414.

    Article  Google Scholar 

  5. M. Akiyama, C. N. Xu, K. Nonaka, and T. Watanabe (1998). Appl. Phys. Lett. 73, 3046.

    Article  CAS  Google Scholar 

  6. M. Akiyama, C. N. Xu, M. Taira, K. Nonaka, and T. Watanabe (1999). Philos. Mag. Lett. 79, 735.

    Article  CAS  Google Scholar 

  7. G. Chen, D. Niu, and X. Liu (2005). J. Alloys Compd. 399, 280.

    Article  CAS  Google Scholar 

  8. Y. B. Xu, X. Yuan, G. H. Huang, and H. Long (2005). Mater. Chem. Phys. 90, 333.

    Article  CAS  Google Scholar 

  9. G. M. Medine, V. Zaikovskii, and K. J. Klabunde (2004). Mater. Chem. 14, 757.

    Article  CAS  Google Scholar 

  10. T. Baidya, N. van Vegten, R. Verel, Y. Jiang, M. Yulikov, T. Kohn, G. Jeschke, and A. Baiker (2011). J. Catal. 281, 241.

    Article  CAS  Google Scholar 

  11. G. Kwak and M. Fujiki (2004). Macromolecules 37, 2021.

    Article  CAS  Google Scholar 

  12. F. Liang, Y. J. Pu, T. Kurata, J. Kido, and H. Nishid (2005). Polymer 46, 3767.

    Article  CAS  Google Scholar 

  13. N. Yu, J. M. Aramini, M. W. German, and Z. Huang (2000). Tetrahedron Lett. 41, 6993.

    Article  CAS  Google Scholar 

  14. F. Texier-Boulle and A. Foucaud (1982). Tetrahedron Lett. 23, 4927.

    Article  Google Scholar 

  15. P. Shanthan Rao and R. Venkataratnam (1991). Tetrahedron Lett. 32, 5821.

    Article  Google Scholar 

  16. G. Bartoli, M. Bosco, A. Carlone, R. Dalpozzo, P. Galzerano, P. Melchiorre, and L. Sambri (2008). Tetrahedron Lett. 49, 2555.

    Article  CAS  Google Scholar 

  17. M. J. Climent, A. Corma, I. Dominguez, S. Iborra, M. J. Sabater, and G. Sastre (2007). J. Catal. 246, 136.

    Article  CAS  Google Scholar 

  18. E. Angeletti, C. Canepa, G. Martinetti, and P. Venturello (1989). J. Chem Soc. Perkin Trans. 1, 105.

    Article  Google Scholar 

  19. D. J. Macquarrie, J. H. Clark, A. Lambert, J. E. GMode, and A. Priest (1997). React. Funct. Polym. 35, 153.

    Article  CAS  Google Scholar 

  20. Y. Kubota, Y. Nishizaki, H. Ikeya, M. Saeki, T. Hida, S. Kawazu, M. Yoshida, H. Fujii, and Y. Sugi (2004). Microporous Mesoporous Mater. 70, 135.

    Article  CAS  Google Scholar 

  21. C. Mukhopadhyay and S. Ray (2011). Catal. Commun. 12, 1496.

    Article  CAS  Google Scholar 

  22. U. D. Joshi, P. N. Joshi, S. S. Tamhankar, V. V. Joshi, C. V. Rode, and V. P. Shiralkar (2003). Appl. Catal. A Gen. 239, 209.

    Article  CAS  Google Scholar 

  23. A. Corma, V. Fornes, R. M. Martin-Aranda, H. Garcia, and J. Primo (1990). Appl. Catal. 59, 237.

    Article  CAS  Google Scholar 

  24. A. Corma, R. M. Martin-Aranda, and F. Sanchezin, in M. Guinst, J. Barrault, C. Bouchoule, D. Duprez, R. Maurel, C. Montassier (eds.), Heterogeneous Catalysis and Fine Chemicals II, Studies in Surface Science and Catalysis, vol 62 (Elsevier, Amsterdam, p. 503, 1991).

  25. A. Corma and R. M. Martin-Aranda (1993). Appl. Catal. A. 105, 271.

    Article  CAS  Google Scholar 

  26. F. X. Llabrés, I. Xamena, F. G. Cirujano, and A. Corma (2012). Microporous Mesoporous Mater. 157, 112.

    Article  Google Scholar 

  27. Q Luo, M. Ji, X. Song, S. E. Park, C. Hao, and Y. Li (2014). Appl. Catal. A 478, 81.

    Article  CAS  Google Scholar 

  28. U. P. N. Tran, K. K. A. Le, and N. T. S. Phan (2011). ACS Catal. 1, 120.

    Article  CAS  Google Scholar 

  29. L. T. L. Nguyen, K. K. A. Le, H. X. Truong, and N. T. S. Phan (2012). Catal. Sci. Technol. 2, 521.

    Article  CAS  Google Scholar 

  30. M. Opanasenko, A. Dhakshinamoorthy, M. Shamzhy, P. Nachtigall, M. Horáček, H. Garciac, and J. Čejka (2013). Catal Sci. Technol. 3, 500.

    Article  CAS  Google Scholar 

  31. Q. Luoa, X. Songa, M. Jia, S.-E. Park, C. Haoa, and Q. Li (2014). Appl. Catal. A Gen. 478, 81.

    Article  Google Scholar 

  32. V. N. Panchenko, M. M. Matrosova, J. Jeon, J. Won Jun, M. N. Timofeeva, and S. H. Jhung (2014). J. Catal. 316, 251.

    Article  CAS  Google Scholar 

  33. K. Sugahara, T. Kimura, K. Kamata, K. Yamaguchi, and N. Mizuno (2012). Communication 48, 8422.

    CAS  Google Scholar 

  34. F. Farzaneh, M. Kashani, and M. Ghandi (2015). React. Kinet. Mech. Catal. doi 10.1007/s11144-015-0919-z.

  35. G. B. B. Varadwaj, S. Rana, and K. M. Parida (2013). Dalton Trans. 42, 5122.

    Article  CAS  Google Scholar 

  36. K. M. Parida, S. Mallick, P. C. Sahoo, and S. K. Rana (2010). Appl. Catal. A 381, 226.

    Article  CAS  Google Scholar 

  37. G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji, and A. Auroux (2010). J. Catal. 269, 110.

    Article  CAS  Google Scholar 

  38. E. Rashtizadeh, F. Farzaneh, and Z. Talebpour (2014). Bioresour. Technol. 154, 32.

    Article  CAS  Google Scholar 

  39. M.-A. Alavi and A. Morsali (2010). Ultrason. Sonochem. 17, 132.

    Article  CAS  Google Scholar 

  40. T. Wanjun and C. Donghua (2007). Int. J. Appl. Ceram. Technol. 4, 549.

    Article  Google Scholar 

  41. H. V. Lee, Y. H. Taufiq-Yap, M. Z. Hussein, and R. Yunus (2013). Energy 49, 12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would appreciate the Alzahra University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Farzaneh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, F., Kashani Maleki, M. & Rashtizadeh, E. Expedient Catalytic Access to Knöevenagel Condensation Using Sr3Al2O6 Nanocomposite in Room Temperature. J Clust Sci 28, 3253–3263 (2017). https://doi.org/10.1007/s10876-017-1288-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1288-8

Keywords

Navigation