Skip to main content
Log in

Surface Oxidation of Supported, Size-Selected Silver Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We use surface second harmonic generation spectroscopy (s-SHG) to study the oxidation of supported, size-selected silver clusters under ultra-high vacuum conditions. The oxidation reaction of small silver clusters between \(\hbox {Ag}_{9}\) and \(\hbox {Ag}_{55}\) is monitored by means of their localized surface plasmon resonance. We observe a rapid decline of the SH-intensity, as soon as cluster samples are exposed to an oxygen partial pressure of \(5 \times 10^{-6}\) mbar, which is attributed to the formation of silver–oxygen-bonds. The evolution of the SH-intensity under exposure to oxygen shows a double-exponential character for all investigated cluster sizes. Since the oxidation of single crystalline silver surfaces follow single-exponential Langmuir-kinetics, the two independent pathways of SH-intensity loss are attributed to a surface- and an interface-oxidation of supported clusters, respectiveley. For small cluster sizes, a complete loss of the SH intensity is obtained, which suggests the complete oxidation of the clusters. For larger clusters a plasmonic resonance is still observed after oxidation, indicating a residual free-electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. W. Niemantsverdriet and I. Chorkendorff Concepts of Modern Catalysis and Kinetics, 2nd ed (Wiley, New York, 2007).

    Google Scholar 

  2. P. Christopher and S. Linic (2008). J. Am. Chem. Soc. 130, (34), 11264.

    Article  CAS  Google Scholar 

  3. P. Christopher, H. Xin and S. Linic (2011). Nat. Chem. 3, (6), 467.

    CAS  Google Scholar 

  4. S. Böcklein, S. Günther and J. Wintterlin (2013). Angew. Chem. Int. Ed. 52, (21), 5518.

    Article  Google Scholar 

  5. S. Böcklein, S. Günther, R. Reichelt, R. Wyrwich, M. Joas, C. Hettstedt, M. Ehrensperger, J. Sicklinger and J. Wintterlin (2013). J. Catal. 299, 129.

    Article  Google Scholar 

  6. S. Vajda, S. Lee, K. Sell, I. Barke, A. Kleibert, V. von Oeynhausen, K. H. Meiwes-Broer, A. F. Rodriguez, J. W. Elam, M. M. Pellin, B. Lee, S. Seifert and R. E. Winans (2009). J. Chem. Phys. 131, (12), 121104.

    Article  Google Scholar 

  7. L. M. Molina, S. Lee, K. Sell, G. Barcaro, A. Fortunelli, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, M. J. Pellin, I. Barke, V. von Oeynhausen, Y. Lei, R. J. Meyer, J. A. Alonso, A. F. Rodríguez, A. Kleibert, S. Giorgio, C. R. Henry, K. H. Meiwes-Broer and S. Vajda (2011). Catal. Today 160, (1), 116.

    Article  CAS  Google Scholar 

  8. Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, R. J. Meyer, P. C. Redfern, D. Teschner, R. Schlögl, M. J. Pellin, L. A. Curtiss and S. Vajda (2010). Science 328, (5975), 224.

    Article  CAS  Google Scholar 

  9. W. Gan, G. Gonella, M. Zhang and H. L. Dai (2011). J. Chem. Phys. 134, (4), 041104.

    Article  Google Scholar 

  10. M. Schmidt, A. Masson and C. Bréchignac (2003). Phys. Rev. Lett. 91, 243401.

    Article  CAS  Google Scholar 

  11. O. S. Ivanova and F. P. Zamborini (2010). J. Am. Chem. Soc. 132, (1), 70.

    Article  CAS  Google Scholar 

  12. E. A. Carter and W. A. Goddard (1989). Surf. Sci. 209, (1), 243.

    Article  CAS  Google Scholar 

  13. S. Klacar, A. Hellman, I. Panas and H. Grönbeck (2010). J. Phys. Chem. C 114, (29), 12610.

    Article  CAS  Google Scholar 

  14. A. Kartouzian, M. Thaemer, T. Soini, J. Peter, P. Pitschi, S. Gilb and U. Heiz (2008). J. Appl. Phys. 104, (12), 124313/1.

    Article  CAS  Google Scholar 

  15. M. Thaemer, A. Kartouzian, P. Heister, S. Gerlach, M. Tschurl, U. Boesl and U. Heiz (2012). J. Phys. Chem. C 116, (15), 8642.

    Article  CAS  Google Scholar 

  16. A. Kartouzian, P. Heister, M. Thämer, S. Gerlach and U. Heiz (2013). J. Opt. Soc. Am. B  30, (3), 541.

    Article  CAS  Google Scholar 

  17. T. Lünskens, P. Heister, M. Thämer, C. A. Walenta, A. Kartouzian and U. Heiz (2015). Phys. Chem. Chem. Phys. 17, (27), 17541.

    Article  Google Scholar 

  18. K. P. Charle, W. Schulze and B. Winter (1989). Zeitschrift für Physik D Atoms, Molecules and Clusters  12, (1–4), 471.

    Article  CAS  Google Scholar 

  19. E. Loginov, L. F. Gomez, N. Chiang, A. Halder, N. Guggemos, V. V. Kresin and A. F. Vilesov (2011). Phys. Rev. Lett. 106, 233401. doi:10.1103/PhysRevLett.106.233401.

    Article  Google Scholar 

  20. M. Thämer, A. Kartouzian, P. Heister, T. Lünskens, S. Gerlach and U. Heiz (2014). Small 10, 2340–2344.

    Article  Google Scholar 

  21. H. Haberland (2013). Nature 494, E1–E2.

    Article  CAS  Google Scholar 

  22. R. Lazzari, J. Jupille, R. Cavallotti and I. Simonsen (2014). J. Phys. Chem. C 118, (13), 7032.

    Article  CAS  Google Scholar 

  23. N. Bloembergen, R. K. Chang, S. S. Jha and C. H. Lee (1968). Phys. Rev. 174, 813.

    Article  CAS  Google Scholar 

  24. V. R. Thierry Verbiest and K. Clays Second-Order Momlinear Optical Characterization Techniques: An Introduction (CRC Press, New York, 2009).

    Book  Google Scholar 

  25. B. A. Sexton and R. J. Madix (1980). Chem. Phys. Lett. 76, (2), 294.

    Article  CAS  Google Scholar 

  26. D. Heskett, L. Urbach, K. Song, E. Plummer and H. Dai (1988). Surf. Sci. 197, (1–2), 225.

    Article  CAS  Google Scholar 

  27. B. Yoon, U. Landman, V. Habibpour, C. Harding, S. Kunz, U. Heiz, M. Moseler and M. Walter (2012). J. Phys. Chem. C 116, (17), 9594.

    Article  CAS  Google Scholar 

  28. L. Cheng, C. Yin, F. Mehmood, B. Liu, J. Greeley, S. Lee, B. Lee, S. Seifert, R. E. Winans, D. Teschner, R. Schlögl, S. Vajda and L. A. Curtiss (2014). ACS Catal. 4, (1), 32.

    Article  CAS  Google Scholar 

  29. B. H. Mao, R. Chang, L. Shi, Q. Q. Zhuo, S. Rani, X. S. Liu, E. C. Tyo, S. Vajda, S. D. Wang and Z. Liu (2014). Phys. Chem. Chem. Phys. 16, 26645.

    Article  CAS  Google Scholar 

  30. D. Heskett, L. Urbach, K. Song, E. Plummer and H. Dai (1988). Surf. Sci. 197, (1), 225.

    Article  CAS  Google Scholar 

  31. J. J. Mock, D. R. Smith and S. Schultz (2003). Nano Lett. 3, (4), 485.

    Article  CAS  Google Scholar 

  32. C. Novo, A. M. Funston, A. K. Gooding and P. Mulvaney (2009). J. Am. Chem. Soc. 131, (41), 14664.

    Article  CAS  Google Scholar 

  33. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou and P. F. Brevet (2013). J. Phys. Chem. C 117, (2), 1172.

    Article  CAS  Google Scholar 

  34. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou and P. F. Brevet (2012). Nano Lett. 12, (3), 1697.

    Article  CAS  Google Scholar 

  35. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou and P. F. Brevet (2013). J. Phys. Chem. C 117, (2), 1172.

    Article  CAS  Google Scholar 

  36. Y. R. Shen (1989). Annu. Rev. Phys. Chem. 40, 327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aras Kartouzian.

Additional information

This work has been supported by the BMBF through the project IC4, the European Research Council through an Advanced Research Grant (246645-ASC3), and the DFG through the Project (HE 3454/21-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lünskens, T., Walenta, C.A., Heister, P. et al. Surface Oxidation of Supported, Size-Selected Silver Clusters. J Clust Sci 28, 3185–3192 (2017). https://doi.org/10.1007/s10876-017-1285-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1285-y

Keywords

Navigation