Skip to main content
Log in

Synthesis of CuS Nanoparticles by Laser Ablation Method in DMSO Media

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Effects of laser fluence on the characteristics of copper sulfide (CuS) nanoparticles (NPs), produced by laser ablation method have been investigated experimentally. CuS nanoparticles were synthesized by the pulsed laser ablation of a high purity copper bulk in dimethyl sulfoxide (DMSO). Pulses of a Q-switched Nd:YAG laser of 1064 nm wavelength at 7 ns pulse width and different fluences were employed to irradiate the Cu solid target in DMSO. The Effects of laser fluence on the size, morphology, and structure of produced nanoparticles have been studied. Results show that the size distribution of the generated CuS nanoparticles was augmented by increasing the laser fluence. The rate of CuS nanoparticles production was increased by increasing the laser fluence. The bandgap energy for CuS nanoparticles was calculated to be 3.77–3.94 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. X. Zhao and C. Burda (2012). Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy Environ. Sci. 5, (2), 5564–5576.

    Article  CAS  Google Scholar 

  2. H. Lee, S. W. Yoon, E. J. Kim, and J. Park (2007). In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials. Nano Lett. 7, (3), 778–784.

    Article  CAS  Google Scholar 

  3. X. L. Yu, Y. Wang, H. L. W. Chan, and C. B. Cao (2009). Novel gas sensoring materials based on CuS hollow spheres. Microporous Mesoporous Mater. 118, (1–3), 423–426.

    Article  CAS  Google Scholar 

  4. A. E. Raevskaya, A. L. Stroyuk, S. Y. Kuchmii, and A. I. Kryukov (2004). Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. J. Mol. Catal. A Chem. 212, (1–2), 259–265.

    Article  CAS  Google Scholar 

  5. A. M. Malyarevich, et al. (2000). Nonlinear optical properties of CuxS and CuInS2 nanoparticles in sol–gel glasses. J. Appl. Phys. 87, (1), 212–216.

    Article  CAS  Google Scholar 

  6. R. S. Mane and C. D. Lokhande (2000). Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65, (1), 1–31.

    Article  CAS  Google Scholar 

  7. Y. Wang, X. Zhang, P. Chen, H. Liao, and S. Cheng (2012). In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries. Electrochim. Acta 80, 264–268.

    Article  CAS  Google Scholar 

  8. F. Davar, M. R. Loghman-Estarki, M. Salavati-Niasari, and M. Mazaheri (2016). Controllable Synthesis of Covellite Nanoparticles via Thermal Decomposition Method. J. Clust. Sci. 27, (2), 593–602.

    Article  CAS  Google Scholar 

  9. M. Salavati-Niasari, S. Alizadeh, M. Mousavi-Kamazani, N. Mir, O. Rezaei, and E. Ahmadi (2013). Surfactant-Free Fabrication of Copper Sulfides (CuS, Cu2S) via Hydrothermal Method. J. Clust. Sci. 24, (4), 1181–1191.

    Article  CAS  Google Scholar 

  10. E. Godočíková, P. Baláž, J. M. Criado, C. Real, and E. Gock (2006). Thermal behaviour of mechanochemically synthesized nanocrystalline CuS. Thermochim. Acta 440, (1), 19–22.

    Article  Google Scholar 

  11. M. Xin, K. Li, and H. Wang (2009). Synthesis of CuS thin films by microwave assisted chemical bath deposition. Appl. Surf. Sci. 256, (5), 1436–1442.

    Article  CAS  Google Scholar 

  12. C. Wu, et al. (2008). Synthesis and optical properties of CuS nanowires fabricated by electrodeposition with anodic alumina membrane. Mater. Lett. 62, (6–7), 1074–1077.

    Article  CAS  Google Scholar 

  13. K.-J. Huang, J.-Z. Zhang, and Y. Fan (2015). One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials. J. Alloys Compd. 625, 158–163.

    Article  CAS  Google Scholar 

  14. K. Y. Niu, J. Yang, S. A. Kulinich, J. Sun, H. Li, and X. W. Du (2010). Morphology Control of Nanostructures via Surface Reaction of Metal Nanodroplets. J. Am. Chem. Soc. 132, (28), 9814–9819.

    Article  CAS  Google Scholar 

  15. V. Amendola and M. Meneghetti (2009). Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 11, (20), 3805–3821.

    Article  CAS  Google Scholar 

  16. D. Dorranian, S. A. Ahmadi Afshar, N. Tahmasebi, and A. Fotovat Eskandari (2014). Effect of Laser Pulse Energy on the Characteristics of Cu Nanoparticles Produced by Laser Ablation Method in Acetone. J. Clust. Sci. 25, (4), 1147–1156.

    Article  CAS  Google Scholar 

  17. V. Amendola and M. Meneghetti (2013). What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, (9), 3027–3046.

    Article  CAS  Google Scholar 

  18. K. Y. Niu, J. Yang, S. A. Kulinich, J. Sun, and X. W. Du (2010). Hollow Nanoparticles of Metal Oxides and Sulfides: fast Preparation via Laser Ablation in Liquid. Langmuir 26, (22), 16652–16657.

    Article  CAS  Google Scholar 

  19. M. Saranya, et al. (2014). Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technol. 252, 25–32.

    Article  CAS  Google Scholar 

  20. R. Sahraei, S. Noshadi, and A. Goudarzi (2015). Growth of nanocrystalline CuS thin films at room temperature by a facile chemical deposition method. RSC Adv. 5, (94), 77354–77361.

    Article  CAS  Google Scholar 

  21. E. Solati, M. Mashayekh, and D. Dorranian (2013). Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A Mater. Sci. Process. 112, (3), 689–694.

    Article  CAS  Google Scholar 

  22. V. S. Vendamani, A. Tripathi, A. P. Pathak, and S. V. Rao, “Laser ablation of natural micas: Synthesis of MgO and Mg (OH) 2 nanoparticles and nanochains,” Mater. Lett., 2017.

  23. C. Chen, Q. Li, Y. Wang, Y. Li, and X. Zhong (2011). Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid. Front. Optoelectron. China 4, (2), 150–155.

    Article  Google Scholar 

  24. M. Anpo (2004). Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocatalysts Able to Operate under UV–Visible Light Irradiation: approaches in Realizing High Efficiency in the Use of Visible Light. Bull. Chem. Soc. Jpn. 77, (8), 1427–1442.

    Article  CAS  Google Scholar 

  25. D. Dorranian, E. Solati, and L. Dejam (2012). Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, (2), 307–314.

    Article  CAS  Google Scholar 

  26. R. Rusdi, A. A. Rahman, N. S. Mohamed, N. Kamarudin, and N. Kamarulzaman (2011). Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures. Powder Technol. 210, (1), 18–22.

    Article  CAS  Google Scholar 

  27. F. Li, J. Wu, Q. Qin, Z. Li, and X. Huang (2010). Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technol. 198, (2), 267–274.

    Article  CAS  Google Scholar 

  28. K. R. Nemade and S. A. Waghuley (2015). Band gap engineering of CuS nanoparticles for artificial photosynthesis. Mater. Sci. Semicond. Process. 39, 781–785.

    Article  CAS  Google Scholar 

  29. S. Hamad, et al. (2014). Femtosecond ablation of silicon in acetone: tunable photoluminescence from generated nanoparticles and fabrication of surface nanostructures. J. Phys. Chem. C 118, (13), 7139–7151.

    Article  CAS  Google Scholar 

  30. J. Liqiang, et al. (2006). Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, (12), 1773–1787.

    Article  Google Scholar 

  31. J. Zhou, F. Zhao, X. Wang, Z. Li, Y. Zhang, and L. Yang (2006). Template synthesis and luminescent properties of nano-sized YAG: tb phosphors. J. Lumin. 119–120, 237–241.

    Article  Google Scholar 

  32. K. Takase, et al. (2002). Electrical resistivity and photoluminescence spectrum of layered oxysulfide (LaO)CuS. Solid State Commun. 123, (12), 531–534.

    Article  CAS  Google Scholar 

  33. A. Awadhia and S. L. Agrawal (2007). Structural, thermal and electrical characterizations of PVA:dMSO:NH4SCN gel electrolytes. Solid State Ionics 178, (13–14), 951–958.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khademian, M., Zandi, M., Amirhoseiny, M. et al. Synthesis of CuS Nanoparticles by Laser Ablation Method in DMSO Media. J Clust Sci 28, 2753–2764 (2017). https://doi.org/10.1007/s10876-017-1257-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1257-2

Keywords

Navigation