Skip to main content
Log in

Monascus Pigments Mediated Rapid Green Synthesis and Characterization of Gold Nanoparticles with Possible Mechanism

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present investigation is the first report for application of food grade Monascus pigments (MPs) as a reducing and capping agent for the green and rapid synthesis of nanosized gold particles in presence of sunlight. Present prodigious nano material synthesis methods are capital-intensive and health hazardous due to the use of toxic chemical reducing agents. Thus, still, there is a need of safe, nontoxic, and ecofriendly synthesis methods. On this background in the present study, the MPs mediated rapid synthesis of AuNPs was observed within 25 min as confirmed by UV–Vis Spectroscopy. The MPs synthesized gold nanoparticles are predominantly spherical, triangular and irregular shapes with an average size of 10–60 nm was confirmed with FE-SEM, TEM and EDAX show gold element. The stability and particle size distribution studies revealed that nanoparticles are stable (−10.5 mV) and disperse. The possible mechanism of MPs in reduction of gold chloride elucidated by FT-IR and TLC. The chemical changes in the fungal pigments (MPs) with the exposure of sunlight might be responsible for the reduction of metal salt into nanosized particles. Overall this is the ecofriendly rapid method for synthesis of metal nanoparticle without exploiting the additional energy and toxic chemical reducing agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. L. Rosi and C. A. Mirkin (2005). Chem. Rev. 105, 1547–1562.

    Article  CAS  Google Scholar 

  2. U. A. Gunasekera, Q. A. Pankhurst, and M. Douek (2009). Target. Oncol. 4, 169–181.

    Article  Google Scholar 

  3. R. Raghavendra, K. Arunachalam, S. K. Annamalai, and M. Aarrthy (2014). Int. J Pharma. Pharmaceut. Sci. 6, 74–87.

    Google Scholar 

  4. M. Sastry, A. Ahmad, M. I. Khan, and R. Kumar (2003). Curr. Sci. 85, 162–170.

    CAS  Google Scholar 

  5. G. Peto, G. L. Molnar, Z. Paszti, O. Geszti, A. Beck, and L. Guczi (2002). Mater. Sci. Eng. C. 19, 95–99.

    Article  Google Scholar 

  6. M. Demurtas and C. C. Perry (2014). Gold. Bull. 47, 103–107.

    Article  CAS  Google Scholar 

  7. A. El-Ansary, S. Al-Daihan (2009). J. Toxicol. 1–9.

  8. M. Zheng and X. Huang (2007). Nanotech. Life Sci. doi:10.1002/9783527610419.ntls0004.

    Google Scholar 

  9. P. Singh, H. Singh, Y. Z. Kim, R. Mathiyalagan, C. Wang, D. C. Yang (2016). Enz. Microbial. Technol. 86, 75–83.

  10. E. Boisselier and D. Astruc (2009). Chem. Rev. 38, 1759–1782.

    Article  CAS  Google Scholar 

  11. A. Chauhan, S. Zubair, S. Tufail, A. Sherwani, M. Sajid, S. C. Raman, and A. A. M. Owais (2011). Int. J. Nanomed. 6, 2305–2319.

    CAS  Google Scholar 

  12. H. P. Borase, B. K. Salunke, R. B. Salunkhe, C. D. Patil, J. E. Hallsworth, B. S. Kim, and S. V. Patil (2014). Appl. Biochem. Biotechnol. 173, 1–29.

    Article  CAS  Google Scholar 

  13. T. Luangpipat, I. R. Beattie, Y. Chisti, and R. G. Haverkamp (2011). J. Nanopart. Res. 13, 6439–6445.

    Article  CAS  Google Scholar 

  14. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. NBM 6, 257–262.

    Article  CAS  Google Scholar 

  15. N. M. Soltani, B. G. Shahidi, and N. Khaleghi (2015). Nanomed. J. 2, (2), 153–159.

    Google Scholar 

  16. M. I. Husseiny, M. Abd El-Aziz, Y. Badr, and M. A. Mahmoud (2007). Spectrochimica Acta Part A 67, 1003–1006.

    Article  CAS  Google Scholar 

  17. H. Spring and K. H. Schleifer (1995). Syst. Appl. Microbiol. 18, 147–153.

    Article  Google Scholar 

  18. N. Kroger, R. Deutzmann, and M. Sumper (1999). Science 286, 1129.

    Article  CAS  Google Scholar 

  19. S. Mann (1993). Nature 365, 499.

    Article  CAS  Google Scholar 

  20. K. B. Narayanan and N. Sakthivel (2010). Adv. Collid. Interf. Sci. 156, 1–13.

    Article  CAS  Google Scholar 

  21. F. C. Lopes, D. M. Tichota, J. Q. Pereira, J. Segalin, A. de Oliveira Rios, and A. Brandelli (2013). Appl. Biochem. Biotech. 171, 616–625.

    Article  CAS  Google Scholar 

  22. F. M. Said, J. Brooks, and Y. Chisti (2014). J. Micro. Biotech. 30, 2471–2479.

    Article  CAS  Google Scholar 

  23. I. Wongjewboot, S. Kongruang (2011). Int. J Biosci. Biochem. Bioinfo. 1, 79.

  24. F. Vendruscolo, B. L. Müller, D. E. Moritz, D. de Oliveira, W. Schmidell, and J. L. Ninow (2013). Biocat. Agri. Biotechnol. 2, 278–284.

    Google Scholar 

  25. S. T. Silveira, D. J. Daroit, V. Sant’Anna, A. Brandelli (2013). Food. Bioproc. Technol. 6, 1007–1014.

  26. B. Kaur, D. Chakraborty, and H. Kaur (2009). Int. J. Microbiol. 7, 1–7.

    Google Scholar 

  27. C. P. Jeon, J. B. Lee, and G. S. Kwon (2013). J. Life. Sci. 23, 669–675.

    Article  Google Scholar 

  28. S. H. Koli, R. K. Suryawanshi, C. D. Patil, and S. V. Patil (2017). FEMS Microbiol. Lett. doi:10.1093/femsle/fnx058.

    Google Scholar 

  29. L. Martinkova, P. Juzlova, and D. Vesely (1995). J Appl Bacteriol. 79, 609–616.

    Article  CAS  Google Scholar 

  30. Z. Hu, X. Zhang, Z. Wu, H. Qi, and Z. Wang (2012). Appl. Microbiol. Biotechnol. 94, 81–89.

    Article  CAS  Google Scholar 

  31. S. A., Aromal, D. Philip (2012). Physica E: Low-Dimensional Systems and Nanostructures44, 1329–1334.

  32. K. Wager, T. Chui, and S. Adem (2014). J. Appl. Chem. 7, 5.

    Google Scholar 

  33. K. Jayalakshmi, M. Ibrahim, K. Venkateswar Rao (2014). Int. J Electron. Electric. Eng. 7, 159–164.

  34. L. Wang, W. Ma, L. Xu, W. Chen, Y. Zhu, C. Xu, and N. A. Kotov (2010). Materials. Sci. Eng. R: Rep 70, 265–274.

    Article  Google Scholar 

  35. C. Jayaseelan, R. Ramkumar, A. A. Rahuman, and P. Perumal (2013). Industrial Crops and Products 45, 423–429.

    Article  CAS  Google Scholar 

  36. H. P. Borase, C. D. Patil, R. B. Salunkhe, R. K. Suryawanshi, B. K. Salunke, and S. V. Patil (2014). Int. J Cosmet. Sci. 36, 571–578.

    Article  CAS  Google Scholar 

  37. F. Namvar, S. Azizi, M. B. Ahmad, K. Shameli, R. Mohamad, M. Mahdavi, and P. M. Tahir (2015). Res. Chem. Intermed. 41, 5723–5730.

    Article  CAS  Google Scholar 

  38. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller (2005). Langmuir 21, 1931–1936.

    Article  CAS  Google Scholar 

  39. R. Tantra, Nanomaterial Characterization: An Introduction Nanomaterial (Wiley, New York, 2016). pp. 38–41.

  40. R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, and K. J. Wilkinson (2009). Environ. Sci. Technol. 43, 7277–7284.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are indebted to University Grants Commission and Department of Science and Technology, India for making the research facilities available under the UGC-SAP and UGC-FIST programs sanctioned to the School of Life Sciences. Mr. Sunil H. Koli also thankful to UGC-BSR for providing fellowship for research work (File No.-NMU/SLS/491/2015 UGC-BSR dated 11 August 2015). Authors are thankful to constant encouragement and support of Prof. Khanongnuch, Chartcha, Chiang Mai, University, Thailand and Prof. Dr. C. Hanny Wijaya, Bogor Agricultural University, Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2017_1254_MOESM1_ESM.docx

UV–vis absorption spectrum of MPs pigments a) orange Monascus pigments (OMPs) and b) red Monascus pigments (RMPs), S1-B EDAX a) OMPs mediated synthesized and b) RMPs mediated synthesized AuNPs, S1-C Thin Layer Chromatography of MPs pigments and AuNPs, Lane 1- OMPs, 2-OMPs mediated AuNPs, 3-RMPs and 4- RMPs mediated AuNPs, S1- D Effect of pH on MPs mediated AuNPs synthesis. (DOCX 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koli, S.H., Mohite, B.V., Borase, H.P. et al. Monascus Pigments Mediated Rapid Green Synthesis and Characterization of Gold Nanoparticles with Possible Mechanism. J Clust Sci 28, 2719–2732 (2017). https://doi.org/10.1007/s10876-017-1254-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1254-5

Keywords

Navigation