Abstract
Penetration of most of the polar drugs through the cell membrane is a challenging problem. It has been indicated that carbonaceous nanostructures can penetrate into biological cells. Here, we investigated the potential application of a C24 fullerene as a carrier for anti-cancer 5-fluorouracil (5-FU) drug using density functional theory calculations. It was found that the 5-FU interaction with the pristine fullerene is very weak with adsorption energy of about −3.2 kcal/mol which is not suitable for drug delivery. To overcome this problem, one carbon atom is substituted by a boron atom which increases the adsorption energy to −27.2 kcal/mol. The B-doping makes the electronic properties of the fullerene sensitive to the drug. Finally, we proposed a drug release based on the low pH in the cancer cells. It was indicated that attacking protons to the interaction area between the drug and fullerene separates the drug from the carrier.
This is a preview of subscription content, access via your institution.






References
D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick, and A. Sen (2013). Nanoscale 5, 1273.
M.-A. Bolzinger, S. Briançon, J. Pelletier, and Y. Chevalier (2012). Curr. Opin. Colloid Interface Sci. 17, 156.
M. T. Baei, A. A. Peyghan, M. Moghimi, and S. Hashemian (2012). J. Cluster Sci. 23, 1119.
A. A. Peyghan, M. T. Baei, and S. Hashemian (2013). J. Cluster Sci. 24, 341.
H. Salimi, A. A. Peyghan, and M. Noei (2015). J. Cluster Sci. 26, 609.
S. Smart, A. Cassady, G. Lu, and D. Martin (2006). Carbon 44, 1034.
W. Zhou, J. Zhou, J. Shen, C. Ouyang, and S. Shi (2012). J. Phys. Chem. Solids 73, 245.
B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, and M. M. Titirici (2010). Adv. Mater. 22, 813.
S. Bashiri, E. Vessally, A. Bekhradnia, A. Hosseinian, and L. Edjlali (2017). Vacuum 136, 156–162.
E. Vessally, F. Behmagham, B. Massoumi, A. Hosseinian, and L. Edjlal (2016). Vacuum 134, 40–47.
J.-L. Yue, Y.-N. Zhou, S.-Q. Shi, Z. Shadike, X.-Q. Huang, J. Luo, Z.-Z. Yang, H. Li, L. Gu, and X.-Q. Yang (2015). Sci. Rep. 5, 8810.
S. A. Siadati, E. Vessally, A. Hosseinian, and L. Edjlali (2016). Synthetic Met. 220, 606–611.
L. Safari, E. Vessally, A. Bekhradnia, A. Hosseinian, and L. Edjlali (2017). Thin Solid Films 623, 157–163.
A. Hosseinian, A. Bekhradnia, E. Vessally, L. Edjlali, and M. D. Esrafili (2017). J. Mol. Graph. Model. 73, 101.
A. Hosseinian, S. Soleimani-amiri, S. Arshadi, E. Vessally, and L. Edjlali (2017). Phys. Lett. A 381, 2010.
K. Nejati, S. Arshadi, E. Vessally, A. Bekhradnia, and A. Hosseinian (2017). Phys. E 90, 143.
K. Nejati, A. Hosseinian, A. Bekhradnia, E. Vessally, and L. Edjlali (2017). J. Mol. Graph. Model. 74, 1.
A. Hosseinian, Z. Asadi, L. Edjlali, A. Bekhradnia, and E. Vessally (2017). Comput. Theor. Chem. 1106, 36.
K. Nejati, A. Hosseinian, L. Edjlali, and E. Vessally (2017). J. Mol. Liq. 229, 167.
D. Robati, S. Bagheriyan, M. Rajabi, O. Moradi, and A. A. Peyghan (2016). Phys. E 83, 1.
M. Nayebzadeh, A. A. Peyghan, and H. Soleymanabadi (2014). Phys. E 62, 48.
Y. Gao, M. Hu, X. Chu, and Q. Yan (2013). J. Mater. Sci. Mater. Electron. 24, 4008.
R. G. Mendes, A. Bachmatiuk, B. Büchner, G. Cuniberti, and M. H. Rümmeli (2013). J. Mater. Chem. B 1, 401.
J. M. Tan, G. Karthivashan, S. Abd Gani, S. Fakurazi, and M. Z. Hussein (2015). J. Mater. Sci. Mater. Med. 27, 26.
M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, and C. Kittrell (2002). Science 297, 593.
N. W. S. Kam, M. O’Connell, J. A. Wisdom, and H. Dai (2005). Proc. Natl. Acad. Sci. USA 102, 11600.
N. R. Anderson, J. J. Lokich, and C. Moore (1993). Cancer 72, 2287.
D. L. Keefe, N. Roistacher, and M. K. Pierri (1993). J. Clin. Pharmacol. 33, 1060.
D. B. Longley, D. P. Harkin, and P. G. Johnston (2003). Nat. Rev. Cancer 3, 330.
P. Parhi, C. Mohanty, and S. K. Sahoo (2012). Drug Discov. Today 17, 1044.
R. R. Gupta, S. K. Jain, and M. Varshney (2005). Colloids Surf. B Biointerfaces 41, 25.
G. M. El Maghraby, A. C. Williams, and B. W. Barry (2001). J. Pharm. Pharmacol. 53, 1069.
M. K. Hazrati and N. L. Hadipour (2016). Phys. Lett. A 380, 937.
M. Moradi, A. A. Peyghan, Z. Bagheri, and M. Kamfiroozi (2012). J. Mol. Model. 18, 3535.
Z. Bagheri (2016). Appl. Surf. Sci. 383, 294.
M. T. Baei, P. Torabi, H. Mohammadian, and H. Saeedeh (2015). Fuller. Nanotubes Carbon Nanostruct. 23, 874.
R. Yu, M. Zhan, D. Cheng, S. Yang, Z. Liu, and L. Zheng (1995). J. Phys. Chem. 99, 1818.
A. Hebard, M. Rosseinky, R. Haddon, D. Murphy, S. Glarum, T. Palstra, A. Ramirez, and A. Karton (1991). Nature 350, 600.
C. Ray, M. Pellarin, J. Lermé, J. Vialle, M. Broyer, X. Blase, P. Mélinon, P. Kéghélian, and A. Perez (1998). Phys. Rev. Lett. 80, 5365.
Z. Ying, R. Hettich, R. Compton, and R. Haufler (1996). J. Phys. B At. Mol. Opt. Phys. 29, 4935.
T. Guo, C. Jin, and R. Smalley (1991). J. Phys. Chem. 95, 4948.
D. Golberg, Y. Bando, K. Kurashima, and T. Sasaki (1998). Appl. Phys. Lett. 72, 2108.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, and S. Su (1993). J. Comput. Chem. 14, 1347.
S. Grimme, S. Ehrlich, and L. Goerigk (2011). J. Comput. Chem. 32, 1456.
A. Soltani, A. Ahmadi Peyghan, and Z. Bagheri (2013). Phys. E 48, 176.
A. K. Mishra (2015). J. Comput. Sci. 10, 195.
M. Shadman, S. Yeganegi, and M. R. Galugahi (2016). J. Iran. Chem. Soc. 13, 207.
X. Wang, K. Wang, Q. Meng, and D. Wang (2014). Comput. Theor. Chem. 1027, 160.
A. A. Peyghan and M. Moradi (2015). J. Iran. Chem. Soc. 12, 751.
M. A. Abdulsattar (2011). Superlattices Microstruct. 50, 377.
J. Beheshtian, A. A. Peyghan, and M. Noei (2013). Sens Actuators B Chem 181, 829.
N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner (2008). J. Comput. Chem. 29, 839.
S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.
M. Samadizadeh, A. A. Peyghan, and S. F. Rastegar (2016). Main Group Chem. 15, 107.
J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2013). J. Mol. Model. 19, 2197.
N. L. Hadipour, A. Ahmadi Peyghan, and H. Soleymanabadi (2015). J. Phys. Chem. C 119, 6398.
M. Samadizadeh, A. A. Peyghan, and S. F. Rastegar (2015). Chin. Chem. Lett. 26, 1042.
A. A. Peyghan, S. F. Rastegar, and N. L. Hadipour (2014). Phys. Lett. A 378, 2184.
P. Swietach, R. D. Vaughan-Jones, A. L. Harris, and A. Hulikova (2014). Philos. Trans. R. Soc. B 369, 20130099.
Acknowledgements
The authors gratefully acknowledge the financial support of this work by the Mazandaran University of Medical Sciences “Professor’s Projects Funds”. Payame Noor University gratefully acknowledged for financial support.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Hosseinian, A., Vessally, E., Yahyaei, S. et al. A Density Functional Theory Study on the Interaction Between 5-Fluorouracil Drug and C24 Fullerene. J Clust Sci 28, 2681–2692 (2017). https://doi.org/10.1007/s10876-017-1253-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-017-1253-6
Keywords
- Electronic structure
- Nanostructure
- Drug delivery
- DFT