Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 2337–2348 | Cite as

Solution Combustion Synthesis of Hierarchically Structured V2O5 Nanoflakes: Efficacy Against Plasmodium falciparum, Plasmodium berghei and the Malaria Vector Anopheles stephensi

  • Kadarkarai Murugan
  • Christina Mary Samidoss
  • Jayaraman Theerthagiri
  • Chellasamy Panneerselvam
  • Jagannathan Madhavan
  • Aruliah Rajasekar
  • Angelo Canale
  • Giovanni Benelli
Original Paper

Abstract

The effective prevention and treatment of malaria still represent a major public health challenge. Here, the solution combustion method was used for the synthesis of hierarchically structured V2O5 nanoflakes. The toxicity of V2O5 nanoflakes was evaluated on the malaria vector Anopheles stephensi and on the malaria parasites Plasmodium falciparum and P. berghei, relying to in vitro and in vivo assays. V2O5 nanoflakes were examined by various techniques, including powder X-ray diffraction, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (XRD), and high resolution transmission electron microscopy (HR-TEM). LC50 of V2O5 nanoflakes against A. stephensi larvae and pupae were 1.936 ppm (larva I), 3.606 ppm (II), 4.750 ppm (III), 6.636 ppm (IV), and 8.876 ppm (pupae). Furthermore, the antiplasmodial activity of V2O5 nanoflakes was evaluated against chloroquine-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of V2O5 nanoflakes were 84.54 μg/ml (CQ-s) and 88.17 μg/ml (CQ-r). In vivo antiplasmodial experiments conducted on P. berghei infecting albino mice showed moderate activity of V2O5 nanoflakes, if compared to chloroquine. Overall, our results highlighted the promising potential of the solution combustion method for the synthesis of hierarchically structured V2O5 nanoflakes, which showed really high efficacy as mosquito larvicides and pupicides.

Keywords

Chemosuppression Larvicide Malaria Nanosynthesis 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing interests.

References

  1. 1.
    R. R. Argotte, A. G. Ramírez, G. M. C. Rodríguez, et al. (2006). J. Nat. Prod. 69, 1442–1444.CrossRefGoogle Scholar
  2. 2.
    A. Bagavan, A. A. Rahuman, N. K. Kaushik, and D. Sahal (2011). Parasitol. Res. 108, 15–22.CrossRefGoogle Scholar
  3. 3.
    C. Banupriya, K. Srinivasan, A. Rajasekar, K. Murugan, G. Benelli, and K. Dinakaran (2017). Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.01.018.Google Scholar
  4. 4.
    G. Benelli (2015). Parasitol. Res. 114, 2801–2805.CrossRefGoogle Scholar
  5. 5.
    G. Benelli (2015). Parasitol. Res. 114, 3201–3212.CrossRefGoogle Scholar
  6. 6.
    G. Benelli (2016). Parasitol. Res. 115, 23–34.CrossRefGoogle Scholar
  7. 7.
    G. Benelli (2016). Enzyme Microb. Technol. 95, 58–68.CrossRefGoogle Scholar
  8. 8.
    G. Benelli (2017). J. Clust. Sci. doi: 10.1007/s10876-016-1143-3.Google Scholar
  9. 9.
    G. Benelli and M. Govindarajan (2017). J. Clust. Sci. 28, 287–308.CrossRefGoogle Scholar
  10. 10.
    G. Benelli and H. Mehlhorn (2016). Parasitol. Res. 115, 1747–1754.CrossRefGoogle Scholar
  11. 11.
    G. Benelli, A. Lo Iacono, A. Canale, and H. Mehlhorn (2016). Parasitol. Res. 115, 2131–2137.CrossRefGoogle Scholar
  12. 12.
    G. Benelli, F. Maggi, R. Petrelli, A. Canale, M. Nicoletti, R. Rakotosaona, and P. Rasoanaivo (2017). Ind. Crop. Prod. 103, 19–38.CrossRefGoogle Scholar
  13. 13.
    G. Benelli, M. Govindarajan, M. Rajeswary, S. Senthilmurugan, P. Vijayan, N. S. Alharbi, K. Shine, and J. M. Khaled (2017). Parasitol. Res. 116, 1175–1188.CrossRefGoogle Scholar
  14. 14.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3–10.CrossRefGoogle Scholar
  15. 15.
    A. M. Cao, J. S. Hu, H. P. Liang, and L. J. Wan (2005). Angewandte Chemie Int. 44, 4391–4395.CrossRefGoogle Scholar
  16. 16.
    H. Chang, J. Nikolov, S. K. Kim, H. D. Jang, S. Lim, and D. J. Kim (2011). J. Nanosci. Nanotechnol. 11, (1), 681–685.CrossRefGoogle Scholar
  17. 17.
    J. M. Cohen, D. L. Smith, C. Cotter, A. Ward, and G. Yamey (2012). Malaria J. 11, 122. doi: 10.1186/1475-2875-11-122.CrossRefGoogle Scholar
  18. 18.
    S. B. Dalavi, J. Theerthagiri, M. Manivel Raja, and R. N. Panda (2013). J. Magn. Magn. Mater. 344, 30–34.CrossRefGoogle Scholar
  19. 19.
    A. F. David, J. R. Philip, R. C. Simon, B. Reto, and N. Solomon (2004). Nat. Rev. 3, 509–520.Google Scholar
  20. 20.
    D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, M. Nicoletti, J. S. Hwang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519–1529.CrossRefGoogle Scholar
  21. 21.
    A. C. Ene, S. E. Atawodi, D. A. Ameh, H. O. Kwanshie, and P. U. Agomo (2008). Trends Med. Res. 3, (1), 16–23.CrossRefGoogle Scholar
  22. 22.
    D. J. Finney Probit Analysis (Cambridge University, London, 1971), pp. 68–78.Google Scholar
  23. 23.
    R. Foldbjerg, X. Xiumei Jiang, T. Teodora Miclăuş, C. Chunying Chen, H. Herman Autrup, and C. Beer (2015). Toxicol. Res. 4, 563–575.CrossRefGoogle Scholar
  24. 24.
    C. G. Granqvist (1985). Phys. Scripta 32, (4), 401.CrossRefGoogle Scholar
  25. 25.
    C. G. Granqvist (1994). Solid State Ionics 70–71, 678–685.CrossRefGoogle Scholar
  26. 26.
    G. Gu, M. Schmid, P. W. Chiu, A. Minett, J. Fraysse, G. T. Kim, S. Roth, M. Kozlov, E. Muñoz, and R. H. Baughman (2003). Nat. Mater. 2, 316.CrossRefGoogle Scholar
  27. 27.
    Z. Hu, C. Chen, H. Meng, R. Wang, P. K. Shen, and H. Fu (2011). Electrochem. Commun. 13, 763–765.CrossRefGoogle Scholar
  28. 28.
    S. J. Inbaneson and S. Ravikumar (2013). Appl. Nanosci. 3, 197–201.CrossRefGoogle Scholar
  29. 29.
    M. Ihsan, Q. Meng, L. Li, D. Dan, H. Wang, K. H. Seng, Z. Chen, S. J. Kennedy, Z. Guo, and H. K. Liu (2015). Electrochim. Acta 173, 172–177.CrossRefGoogle Scholar
  30. 30.
    A. Julien, B. Yebka, and J. B. Guesdon (1995). Ionics 1, (4), 316–327.CrossRefGoogle Scholar
  31. 31.
    K. Koren (2015). Environ. Sci. Technol. 49, 2286–2292.CrossRefGoogle Scholar
  32. 32.
    K. Kovendan, K. Murugan, S. Vincent, and D. R. Barnard (2012). Parasitol. Res. 110, 195–203.CrossRefGoogle Scholar
  33. 33.
    J. Livage (1991). Chem. Mater. 3, (4), 578–593.CrossRefGoogle Scholar
  34. 34.
    M. Mahajan, K. Singh, and O. P. Pandey (2012). Adv. Mat. Res. 585, 95–99.CrossRefGoogle Scholar
  35. 35.
    H. Mehlhorn Encyclopedia of Parasitology, 3rd ed (Springer, Heidelberg, 2008).CrossRefGoogle Scholar
  36. 36.
    H. Mehlhorn (ed.) Encyclopedia of Parasitology, 4th ed (Springer, New York, 2015), p. 893.Google Scholar
  37. 37.
    H. J. Muhr, F. Krumeich, U. P. SchPnholzer, F. Bieri, M. Niederberger, L. J. Gauckler, and R. Nesper (2000). Adv. Mater. 12, 231–234.CrossRefGoogle Scholar
  38. 38.
    K. Murugan, G. Benelli, A. Suganya, D. Dinesh, C. Panneerselvam, M. Nicoletti, J. S. Hwang, P. Mahesh Kumar, J. Subramaniam, and U. Suresh (2015). Parasitol. Res. 114, 2243–2253.CrossRefGoogle Scholar
  39. 39.
    K. Murugan, G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, D. Dinesh, M. Nicoletti, J. S. Hwang, U. Suresh, and P. Madhiyazhagan (2015). Exp. Parasitol. 153, 129–138.CrossRefGoogle Scholar
  40. 40.
    K. Murugan, N. Aarthi, K. Kovendan, C. Panneerselvam, B. Chandramohan, P. Mahesh Kumar, D. Amerasan, M. Paulpandi, R. Chandirasekar, D. Dinesh, U. Suresh, J. Subramaniam, A. Higuchi, A. A. Alarfaj, M. Nicoletti, H. Mehlhorn, and G. Benelli (2015). Parasitol. Res. 114, 3657–3666.CrossRefGoogle Scholar
  41. 41.
    K. Murugan, C. M. Samidoss, C. Panneerselvam, A. Higuchi, M. Roni, U. Suresh, B. Chandramohan, J. Subramaniam, P. Madhiyazhagan, D. Dinesh, R. Rajaganesh, A. A. Alarfaj, M. Nicoletti, S. Kumar, H. Wei, A. Canale, H. Mehlhorn, and G. Benelli (2015). Parasitol. Res. 114, 4087–4097.CrossRefGoogle Scholar
  42. 42.
    K. Murugan, C. Panneerselvam, C. M. Samidoss, P. Madhiyazhagan, U. Suresh, M. Roni, B. Chandramohan, J. Subramaniam, D. Dinesh, R. Rajaganesh, M. Paulpandi, H. Wei, A. T. Aziz, M. Saleh Alsalhi, S. Devanesan, M. Nicoletti, R. Pavela, A. Canale, and G. Benelli (2016). Res. Vet. Sci. 106, 14–22.CrossRefGoogle Scholar
  43. 43.
    K. Murugan, D. Dinesh, K. Kavitha, et al. (2016). Parasitol. Res. 115, 1085–1096.CrossRefGoogle Scholar
  44. 44.
    K. Murugan, D. Nataraj, P. Madhiyazhagan, et al. (2016). Parasitol. Res. 115, 1071–1083.CrossRefGoogle Scholar
  45. 45.
    K. Murugan, J. Wei, M. S. Alsalhi, et al. (2017). Parasitol. Res. 116, 495–502.CrossRefGoogle Scholar
  46. 46.
    K. Murugan, D. Nataraj, A. Jaganathan, et al. (2017). J. Clust. Sci. 28, 393–411.CrossRefGoogle Scholar
  47. 47.
    National Vector Borne Disease Control Programme (NVBDCP) (2008) Malaria, magnitude of the problem. Available at http://www.nvbdcp.gov.in/malaria3.html.
  48. 48.
    R. Pavela (2015). Ind. Crops Prod. 76, 174–187.CrossRefGoogle Scholar
  49. 49.
    H. I. Peng (2011). Analyst 136, 436–447.CrossRefGoogle Scholar
  50. 50.
    L. T. Peter and V. K. Anatoli The Current Global Malaria Situation Malaria: Parasite Biology, Pathogenesis and Protection (ASM, Washington, 1998), pp. 11–22.Google Scholar
  51. 51.
    W. Peters, J. H. Portus, and B. L. Robinson (1975). Ann. Tropic. Med. Parasitol. 69, 155–171.CrossRefGoogle Scholar
  52. 52.
    M. Ponzi, C. Duschatzky, A. Carrascull, and E. Ponzi (1998). Appl. Catal. A Gen. 169, (2), 373–379.CrossRefGoogle Scholar
  53. 53.
    A. T. Raj, K. Ramanujan, S. Thangavel, S. Gopalakrishan, N. Raghavan, and G. Venugopal (2015). J. Nanosci. Nanotechnol. 15, (5), 3802–3808.CrossRefGoogle Scholar
  54. 54.
    R. Rajaganesh, K. Murugan, C. Panneerselvam, S. Jayashanthini, A. T. Aziz, M. Roni, U. Suresh, S. Trivedi, H. Rehman, A. Higuchi, M. Nicoletti, and G. Benelli (2016). Res. Vet. Sci. 109, 40–51.CrossRefGoogle Scholar
  55. 55.
    G. Rajakumar, A. A. Rahuman, I. M. Chung, A. Vishnu Kirthi, S. Marimuthu, and K. Anbarasan (2015). Parasitol. Res. 114, 1397–1406.CrossRefGoogle Scholar
  56. 56.
    I. A. Serbinov, S. M. Babulanam, G. A. Niklasson, and C. G. Grangvist (1988). J. Mater. Sci. 23, (6), 2076–2078.CrossRefGoogle Scholar
  57. 57.
    M. Smilkstein, N. Sriwilaijaroen, J. X. Kelly, P. Wilairat, and M. Riscoe (2004). Antimicrob. Agents Chemother. 48, 1803–1806.CrossRefGoogle Scholar
  58. 58.
    U. Suresh, K. Murugan, C. Panneerselvam, R. Rajaganesh, M. Roni, A. T. Aziz, H. A. Naji Al-Aoh, S. Trivedi, H. Hasibur Rehman, S. Kumar, A. Higuchi, A. Canale, and G. Benelli (2017). Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2017.01.002.Google Scholar
  59. 59.
    A. Talledo and C. G. Granqvist (1995). J. Appl. Phys. 77, (9), 4655.CrossRefGoogle Scholar
  60. 60.
    J. Theerthagiri, R. A. Senthil, A. Priya, J. Madhavan, and M. Ashokkumar (2015). New J. Chem. 39, 1367–1374.CrossRefGoogle Scholar
  61. 61.
    J. Theerthagiri, J. Madhavan, K. Murugan, S. Christina Mary, S. Kumar, A. Higuchi, and G. Benelli (2017). J. Clust. Sci. 28, 581–594.CrossRefGoogle Scholar
  62. 62.
    W. Trager and J. Jensen (1976). Science 193, 673–675.CrossRefGoogle Scholar
  63. 63.
    M. Waki (2015). Methods Mol. Biol. 1203, 159–173.CrossRefGoogle Scholar
  64. 64.
    WHO (2014) Malaria. Fact sheet N°94.Google Scholar
  65. 65.
    R. M. Winghtman (1988). Science 240, (4851), 415–420.CrossRefGoogle Scholar
  66. 66.
    R. D. Xue, D. R. Barnard, and A. Ali (2001). Med. Vet. Entomol. 15, 126–131.CrossRefGoogle Scholar
  67. 67.
    Y. Yang, L. Li, H. Fei, Z. Peng, G. Ruan, and J. M. Tour (2014). ACS Appl. Mater. Interfaces 6, 9590–9594.CrossRefGoogle Scholar
  68. 68.
    J. G. Zhang, J. M. McGraw, J. Turner, and D. Ginley (1997). Electrochem. Soc. 144, 1630–1634.CrossRefGoogle Scholar
  69. 69.
    X. F. Zhang, K. X. Wang, X. Wei, and J. S. Chen (2011). Chem. Mater. 23, 5290–5292.CrossRefGoogle Scholar
  70. 70.
    L. Zhu and Y. Tian (2011). Parasitol. Res. 109, 1417–1422.CrossRefGoogle Scholar
  71. 71.
    L. Zhu and Y. Tian (2013). Parasitol. Res. 112, 1137–1142.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kadarkarai Murugan
    • 1
    • 2
  • Christina Mary Samidoss
    • 1
  • Jayaraman Theerthagiri
    • 3
  • Chellasamy Panneerselvam
    • 4
  • Jagannathan Madhavan
    • 3
  • Aruliah Rajasekar
    • 5
  • Angelo Canale
    • 6
  • Giovanni Benelli
    • 6
  1. 1.Department of ZoologyBharathiar UniversityCoimbatoreIndia
  2. 2.Thiruvalluvar UniversityVelloreIndia
  3. 3.Solar Energy Lab, Department of ChemistryThiruvalluvar UniversityVelloreIndia
  4. 4.Faculty of Science, Department of BiologyUniversity of TabukTabukSaudi Arabia
  5. 5.Department of BiotechnologyThiruvalluvar UniversityVelloreIndia
  6. 6.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations