Journal of Cluster Science

, Volume 28, Issue 4, pp 2349–2367 | Cite as

Coating with Active Phytomolecules Enhances Anticancer Activity of Bio-Engineered Ag Nanocomplex

  • Govindaraj Prasannaraj
  • Shivendra Vikram Sahi
  • Giovanni Benelli
  • Perumal Venkatachalam
Original Paper


Green coating of metal and metal oxide nanomaterials is currently recognized as an eco-friendly route to magnify their biological efficacy and reduce risks due to low biocompatibility. In this study, bio-fabricated metallic silver nanoparticles (AgNPs) were synthesized using three medicinal plant extracts, i.e. Eclipta prostrata, Moringa oleifera and Thespesia populnea and then tested for their cytotoxic activity against human prostate (PC3) and liver (HepG2) cancer cell lines. The green fabricated AgNPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, zeta potential analysis, dynamic light scattering, scanning electron microscopy and energy dispersive X-ray spectroscopy. Biofabricated AgNPs exhibited dose-dependent increase in cell toxicity on human prostate cancer, liver cancer and African monkey kidney cell lines. IC50 values of PC3, HepG2 and Vero cells varied depending upon the source used for nanoparticle synthesis. DNA fragmentation, Hoechst, rhodamine and AO/EtBr staining assays confirmed nano-triggered apoptosis of treated cells. The main achievement of this study is that nanofabrication routes relying to E. prostrata, M. oleifera and T. populnea medicinal plant extracts to fabricate Ag nanocomplex within 2 h duration can represent a novel cancer nanodrug and effective way to boost their anticancer efficacy.


Apoptosis Biosynthesis Ag nanoparticles Cytotoxicity HepG2 PC3 cell line 



The authors wish to thank Periyar University, Salem for providing University Research Fellowship to G. Prasannaraj.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflict of interest.


  1. 1.
    J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison (2007). Chem. Rev. 107, 2228–2269.CrossRefGoogle Scholar
  2. 2.
    J. E. Hutchison (2008). ACS Nano. 2, 395–402.CrossRefGoogle Scholar
  3. 3.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramfrez, and M. J. Yacaman (2005). Nanotech. 16, 2346–2353.CrossRefGoogle Scholar
  4. 4.
    J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, and H. J. Lee (2007). Nanomedicine: Nanotech. Biol. Med. 3, 95–101.CrossRefGoogle Scholar
  5. 5.
    P. V. Asharani, L. K. M. Grace, P. H. Manoor, and V. Suresh (2009). ACS Nano 3, 279–290.CrossRefGoogle Scholar
  6. 6.
    S. F. Chau, S. H. Wu, and G. C. Yen (2007). Trends Food Sci. Technol. 18, 269–280.CrossRefGoogle Scholar
  7. 7.
    D. Inbakandan, R. Venkatesan, and S. Ajmal Khan (2010). Colloids Surf. B: Biointer. 81, 634.CrossRefGoogle Scholar
  8. 8.
    World Health Organization The Global Burden of Disease (World Health Organization, Geneva, 2008).Google Scholar
  9. 9.
    American Cancer Society, Cancer Facts and Figures (American Cancer Society: Atlanta, 2016).
  10. 10.
    S. J. P. Jacob, J. S. Finub, and A. Narayanan (2012). Colloids Surf. B: Biointer. 91, 212–214.CrossRefGoogle Scholar
  11. 11.
    R. Sukirtha, K. M. Priyanka, J. J. Antony, S. Kamalakkannan, R. Thangam, P. Gunasekaran, M. Krishnan, and S. Achiraman (2012). Process Biochem. 47, 273–279.CrossRefGoogle Scholar
  12. 12.
    R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, and S. Kannan (2012). Process Biochem. 47, 2405–2410.CrossRefGoogle Scholar
  13. 13.
    M. K. Narasimhan, S. K. Pavithra, K. Vishnupriya, and C. Muthukumaran (2013). Jundishapur J. Nat. Pharm. Prod. 8, 151–159.CrossRefGoogle Scholar
  14. 14.
    A. E. B. Sengab, M. R. Elgindi, and M. A. Mansour (2013). J. Pharm. Phytochem. 2, 136–139.Google Scholar
  15. 15.
    A. Hermawan, A. N. Kholid, D. SarmokoDewi, P. Putri, and E. Meiyanto (2012). J. Natural Remedies 12, 108–114.Google Scholar
  16. 16.
    G. Prasannaraj, S. V. Sahi, S. Ravikumar, and P. Venkatachalam (2016). J. Nanosci. Nanotech. 16, 4948–4959.CrossRefGoogle Scholar
  17. 17.
    R. Indra Priyadharshini, G. Prasannaraj, N. Geetha, and P. Venkatachalam (2014). Appl. Biochem. Biotechnol. 174, 2777–2790.CrossRefGoogle Scholar
  18. 18.
    R. Thangam, P. Gunasekaran, K. Kaveri, G. Sridevi, S. Sundarraj, M. Paulpandi, and S. Kannan (2012). Process Biochem. 47, 1243–1249.CrossRefGoogle Scholar
  19. 19.
    P. Mulvaney (1996). Langmuir 12, 788–800.CrossRefGoogle Scholar
  20. 20.
    P. Venkatachalam, T. Kayalvizhi, U. Jinu, G. Benelli, and N. Geetha (2017). J. Clust. Sci. 28, 607–619.CrossRefGoogle Scholar
  21. 21.
    J. J. Mock, M. Barbic, D. R. Smith, D. A. Shultz, and S. Shultz (2002). J. Chem. Phy. 116, 6755–6759.CrossRefGoogle Scholar
  22. 22.
    K. Kathiresan, S. Manivannan, M. A. Nabeel, and B. Dhivya (2009). Colloids Surf. B: Biointer. 71, 133–137.CrossRefGoogle Scholar
  23. 23.
    P. Mukherjee, M. Roy, B. P. Mandal, G. K. Dey, P. K. Mukherjee, J. Ghatak, A. K. Tyagi, and S. P. Kale (2008). Nanotech. 19, 075103.CrossRefGoogle Scholar
  24. 24.
    A. Singh, D. Jain, M. K. Upadhyay, N. Khandelwal, and H. N. Verma (2010). Digest J. Nanomat. Biostrct. 5, 483–489.Google Scholar
  25. 25.
    K. Kalaiarasi, G. Prasannaraj, S. V. Sahi, and P. Venkatachalam (2015). Turk. J. Biol. 39, 223.CrossRefGoogle Scholar
  26. 26.
    C. Panneerselvam, K. Murugan, M. Roni, A. T. Aziz, U. Suresh, R. Rajaganesh, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, N. Desneux, and G. Benelli (2016). Parasitol. Res. 115, 997–1013.CrossRefGoogle Scholar
  27. 27.
    D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519–1529.CrossRefGoogle Scholar
  28. 28.
    G. Benelli (2016). Parasitol. Res. 115, 23–34.CrossRefGoogle Scholar
  29. 29.
    K. Jeeva, M. Thiyagarajan, V. Elangovan, N. Geetha, and P. Venkatachalam (2014). Ind. Crops Prod. 52, 714–720.CrossRefGoogle Scholar
  30. 30.
    G. Prasannaraj and P. Venkatachalam (2017). J. Photochem. Photobiol. B: Biol. 167, 309–320.CrossRefGoogle Scholar
  31. 31.
    V. Kumar and S. K. Yadav (2009). J. Chem. Technol. Biotech. 84, 151–157.CrossRefGoogle Scholar
  32. 32.
    P. Deepak, R. Sowmiya, R. Ramkumar, G. Balasubramani, D. Aiswarya, and P. Perumal (2016). Artificial Cells Nanomed. Biotech. 21, 1–9.Google Scholar
  33. 33.
    C. Jayaseelan and A. A. Rahuman (2012). Parasitol. Res. 111, 1369–1378.CrossRefGoogle Scholar
  34. 34.
    G. Manjari, S. Saran, T. Arun, S. P. Devipriya and A. V. Bhaskara Rao (2017). J. Clust. Sci. doi:  10.1007/s10876-017-1199-8.
  35. 35.
    R. H. Muller and A. Akkar (2004). In: Encycl. Nanosci. Nanotech. 627–638.Google Scholar
  36. 36.
    P. Kumar, S. Senthamil Selvi, and M. Govindaraju (2012). Appl. Nanosci. 3, 495–500.CrossRefGoogle Scholar
  37. 37.
    A. A. Rokade, J. H. Kim, S. R. Lim, S. I. Yoo, Y. E. Jin, and S. S. Park (2017). J. Clust. Sci.. doi: 10.1007/s10876-017-1196-y.Google Scholar
  38. 38.
    V. Sujitha, K. Murugan, M. Paulpandi, C. Panneerselvam, U. Suresh, M. Roni, M. Nicoletti, A. Higuchi, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, C. Vadivalagan, B. Chandramohan, A. A. Alarfaj, M. A. Munusamy, D. R. Barnard, and G. Benelli (2015). Parasitol. Res. 114, 3315–3325.CrossRefGoogle Scholar
  39. 39.
    B. C. G. Selvi, J. Madhavan, and A. Santhanam (2016). Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 035015.CrossRefGoogle Scholar
  40. 40.
    C. Pouget, F. Lauthier, A. Simon, C. Fagnere, J. Basly, C. Delage, and A. Chulia (2001). Bioorg. Med. Chem. Lett. 11, 3095–3097.CrossRefGoogle Scholar
  41. 41.
    M. S. Baliga and S. K. Katiyar (2006). J. Photochem. Photobiol. Sci. 5, 243–253.CrossRefGoogle Scholar
  42. 42.
    V. Gopiesh Khanna and K. Kannabiran (2009). Int. J. Green Pharm. 1, 227–229.Google Scholar
  43. 43.
    K. Satyavani, S. Gurudeeban, T. Ramanathan, and T. Balasubramanian (2011). J. Nanobiotech. 9, 2–8.CrossRefGoogle Scholar
  44. 44.
    R. Prasanna, C. C. Harish, P. Ramaiyapillai, and D. Sakthisekaran (2011). Biomed. Prev. Nutrit. 1, 153–160.CrossRefGoogle Scholar
  45. 45.
    C. Wenjuan, L. Jinru, Z. Yakun, R. Huilin, L. J. Wensheng, and D. Long (2012). Nanomedicine: Nanotech. Biol. Med. 8, 46–53.CrossRefGoogle Scholar
  46. 46.
    R. Vivek, V. NipunBabu, R. Thangam, K. S. Subramanian, and S. Kannan (2013). Colloids Surf. B: Biointer. 111, 117–123.CrossRefGoogle Scholar
  47. 47.
    R. Thangam, V. Suresh, W. AsenathPrincy, M. Rajkumar, N. Senthil Kumar, P. Gunasekaran, R. Rengasamy, C. Anbazhagan, K. Kaveri, and S. Kannan (2013). Food Chem. 140, 262–272.CrossRefGoogle Scholar
  48. 48.
    M. J. Piao, K. A. Kang, I. K. Lee, H. S. Kim, S. Kim, J. Y. Choi, J. Choi, and J. W. Hyun (2011). Toxicol. Lett. 201, 92–100.CrossRefGoogle Scholar
  49. 49.
    J. Bai and A. I. Cederbaum (2003). J. Biol. Chem. 278, 4660–4667.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Govindaraj Prasannaraj
    • 1
  • Shivendra Vikram Sahi
    • 2
  • Giovanni Benelli
    • 3
  • Perumal Venkatachalam
    • 1
  1. 1.Plant Genetic Engineering and Molecular Biology Lab, Department of Biotechnology, School of BiosciencesPeriyar UniversitySalemIndia
  2. 2.Department of BiologyWestern Kentucky UniversityBowling GreenUSA
  3. 3.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations