First-Principles Investigation of Trimetallic Clusters: GaMnLi n (n = 1–12)

Abstract

The lowest-energy structures and low-lying isomers of double impurity atoms, Ga and Mn, doped Li n (n = 1–12) clusters have been systematically investigated using density functional theory. The trimetallic clusters show larger relative binding energies compared with the bare Li n+2 partners, indicating doping with Ga and Mn atoms could enhance the stabilities of Li n clusters. The HOMO–LUMO gaps, the vertical ionization potentials and the vertical electron affinities have also been analyzed and compared with the pure lithium clusters. The magnetism calculations demonstrate that the magnetic moments of GaMnLi n clusters show a tunable magnetic properties with the increasing number of Li atoms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    E. Benichou, A. R. Allouche, M. Aubert-Frecon, R. Antoine, M. Broyer, P. Dugourd, and D. Rayane (1998). Chem. Phys. Lett. 290, 171.

    CAS  Article  Google Scholar 

  2. 2.

    L. R. Brock, A. M. Knight, J. E. Reddic, J. S. Pilgrim, and M. A. Duncan (1997). J. Chem. Phys. 106, 6268.

    CAS  Article  Google Scholar 

  3. 3.

    H. W. Sarkas, S. T. Arnold, J. H. Hendricks, V. L. Slager, and K. H. Bowen (1994). Z. Phys. D 29, 209.

    CAS  Article  Google Scholar 

  4. 4.

    C. Bréchihnac, H. Busch, P. Cahuzac, and J. Leygnier (1994). J. Chem. Phys. 101, 6992.

    Article  Google Scholar 

  5. 5.

    A. Kornath, A. Kaufmann, A. Zoermer, and R. Ludwig (2003). J. Chem. Phys. 118, 6957.

    CAS  Article  Google Scholar 

  6. 6.

    I. Muz, M. Atiş, O. Canko, and E. K. Yildirim (2013). Chem. Phys. 418, 14.

    CAS  Article  Google Scholar 

  7. 7.

    D. Yepes, S. R. Kirk, S. Jenkins, and A. Restrepo (2012). J. Mol. Model. 18, 4171.

    CAS  Article  Google Scholar 

  8. 8.

    G. Gardet, F. Rogemond, and H. Chermette (1996). J. Chem. Phys. 105, 9933.

    CAS  Article  Google Scholar 

  9. 9.

    S. E. Wheeler, K. W. Sattelmeyer, P. vR Schleyer, H. F. Schaefer, and C. H. Wu (2004). J. Chem. Phys. 120, 4683.

    CAS  Article  Google Scholar 

  10. 10.

    R. O. Jones, A. I. Lichtenstein, and J. Hutter (1997). J. Chem. Phys. 106, 4566.

    CAS  Article  Google Scholar 

  11. 11.

    T. B. Tai, P. V. Nhat, M. T. Nguyen, S. Li, and D. A. Dixon (2011). J. Phys. Chem. A 115, 7673.

    CAS  Article  Google Scholar 

  12. 12.

    J. Blanc, V. Bonačić-Koutecký, M. Broyer, J. Chevaleyre, P. Koutecký, J. Dugourd, C. Scheuch, J. Wolf, and L. Wöste (1992). J. Chem. Phys. 96, 1793.

    CAS  Article  Google Scholar 

  13. 13.

    M. W. Sung, R. Kawai, and J. H. Weare (1994). Phys. Rev. Lett. 73, 3552.

    CAS  Article  Google Scholar 

  14. 14.

    R. Fournier, J. B. Y. Chang, and A. Wong (2003). J. Chem. Phys. 119, 9444.

    CAS  Article  Google Scholar 

  15. 15.

    N. Goel, S. Gautam, and K. Dharamvir (2012). Int. J. Quantum Chem. 112, 575.

    CAS  Article  Google Scholar 

  16. 16.

    A. N. Alexandrova and A. I. Boldyrev (2005). J. Chem. Theory Comput. 1, 566.

    CAS  Article  Google Scholar 

  17. 17.

    A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen (2011). J. Chem. Phys. 134, 044322.

    Article  Google Scholar 

  18. 18.

    P. Chetri, R. C. Deka, and A. Choudhury (2013). Phys. B Condens. Matter 430, 74.

    CAS  Article  Google Scholar 

  19. 19.

    I. Boustani, W. Pewestorf, P. Fantucci, V. Bonaić-Koutecký, and J. Koutecký (1987). Phys. Rev. B 35, 9437.

    CAS  Article  Google Scholar 

  20. 20.

    Z. Y. Jiang, K. H. Lee, S. T. Li, and S. Y. Chu (2006). Int. J. Mass Spectrosc. 253, 104.

    CAS  Article  Google Scholar 

  21. 21.

    J. Pérez, E. Flórez, C. Hadad, P. Fuentealba, and A. Restrepo (2008). J. Phys. Chem. A 112, 5749.

    Article  Google Scholar 

  22. 22.

    M. D. Deshpande and D. G. Kanhere (2002). Phys. Rev. A 65, 033202.

    Article  Google Scholar 

  23. 23.

    T. Baruah and D. G. Kanhere (2001). Phys. Rev. A 63, 063202.

    Article  Google Scholar 

  24. 24.

    A. Meden, J. Mavri, M. Bele, and S. Pejovnik (1995). J. Phys. Chem. 99, 4252.

    CAS  Article  Google Scholar 

  25. 25.

    K. A. Nguyen and K. Lammertsma (1998). J. Phys. Chem. A 102, 1608.

    CAS  Article  Google Scholar 

  26. 26.

    K. A. Nguyen, G. N. Srinivas, T. P. Hamilton, and K. Lammertsma (1999). J. Phys. Chem. A 103, 710.

    CAS  Article  Google Scholar 

  27. 27.

    T. B. Tai and M. T. Nguyen (2010). Chem. Phys. 375, 35.

    CAS  Article  Google Scholar 

  28. 28.

    T. B. Tai and M. T. Nguyen (2010). Chem. Phys. Lett. 489, 75.

    CAS  Article  Google Scholar 

  29. 29.

    A. I. Boldyrev, J. Simons, and P. vR Schleyer (1993). J. Chem. Phys. 99, 8793.

    CAS  Article  Google Scholar 

  30. 30.

    A. I. Boldyrev, N. Gonzales, and J. Simons (1994). J. Phys. Chem. 98, 9931.

    CAS  Article  Google Scholar 

  31. 31.

    A. V. Nemukhin, J. Almlof, and A. Heiberg (1980). Chem. Phys. Lett. 76, 601.

    CAS  Article  Google Scholar 

  32. 32.

    V. Kuma (1999). Phys. Rev. B 60, 2916.

    Article  Google Scholar 

  33. 33.

    X. Q. Guo, R. Podloucky, and A. J. Freeman (1990). Phys. Rev. B 42, 10912.

    CAS  Article  Google Scholar 

  34. 34.

    S. Chacko and D. G. Kanhere (2004). Phys. Rev. A 70, 023204.

    Article  Google Scholar 

  35. 35.

    J. Akola and M. Manninen (2002). Phys. Rev. B 65, 245424.

    Article  Google Scholar 

  36. 36.

    H. P. Cheng, R. N. Barnett, and U. Landman (1993). Phys. Rev. B 48, 1820.

    CAS  Article  Google Scholar 

  37. 37.

    M. S. Lee, S. Gowtham, H. He, K. C. Lau, L. Pan, and D. G. Kanhere (2006). Phys. Rev. B 74, 245412.

    Article  Google Scholar 

  38. 38.

    T. B. Tai and M. T. Nguyen (2012). J. Comput. Chem. 33, 800.

    CAS  Article  Google Scholar 

  39. 39.

    P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, W. Vanhoutte, H. Weidele, R. E. Silverans, A. N. Vazquez, and P. vR Schleyer (1999). Eur. Phys. J. D 9, 289.

    CAS  Article  Google Scholar 

  40. 40.

    P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, F. Vanhoutte, H. Weidele, and R. E. Silverans (1999). Chem. Phys. Lett. 302, 571.

    CAS  Article  Google Scholar 

  41. 41.

    J. Ivanic and C. J. Marsden (1993). J. Am. Chem. Soc. 115, 7503.

    CAS  Article  Google Scholar 

  42. 42.

    P. vR Schleyer, E. U. Wurthwein, E. Kaufman, T. Lark, and J. A. Pople (1983). J. Am. Chem. Soc. 105, 5930.

    Article  Google Scholar 

  43. 43.

    K. Joshi and D. G. Kanhere (2002). Phys. Rev. A 65, 043203.

    Article  Google Scholar 

  44. 44.

    S. Shetty, S. Pal, and D. G. Kanhere (2003). J. Chem. Phys. 118, 7288.

    CAS  Article  Google Scholar 

  45. 45.

    K. Joshi and D. G. Kanhere (2003). J. Chem. Phys. 119, 12301.

    CAS  Article  Google Scholar 

  46. 46.

    G. Gopakumar, P. Lievens, and M. T. Nguyen (2007). J. Phys. Chem. A 111, 4353.

    CAS  Article  Google Scholar 

  47. 47.

    V. T. Ngan, J. H. Haeck, H. T. Le, G. Gopakumar, P. Lievens, and M. T. Nguyen (2009). J. Phys. Chem. A 113, 9080.

    CAS  Article  Google Scholar 

  48. 48.

    Z. Guo, B. Lu, X. Jiang, J. Zhao, and R. H. Xie (2010). Physica E 42, 1755.

    CAS  Article  Google Scholar 

  49. 49.

    H. Kudo (1992). Nature 355, 432.

    CAS  Article  Google Scholar 

  50. 50.

    M. Deshpande, A. Dhavale, R. R. Zope, S. Chacko, and D. G. Kanhere (2000). Phys. Rev. A 62, 063202.

    Article  Google Scholar 

  51. 51.

    Y. Li, D. Wu, Z. R. Li, and C. C. Sun (2007). J. Comput. Chem. 28, 1677.

    CAS  Article  Google Scholar 

  52. 52.

    Y. Li, Y. J. Liu, D. Wu, and Z. R. Li (2009). Phys. Chem. Chem. Phys. 11, 5703.

    CAS  Article  Google Scholar 

  53. 53.

    T. B. Tai, P. V. Nhat, and M. T. Nguyen (2010). Phys. Chem. Chem. Phys. 12, 11477.

    CAS  Article  Google Scholar 

  54. 54.

    P. Shao, X. Y. Kuang, L. P. Ding, M. M. Zhong, and Z. H. Wang (2013). Mol. Phys. 111, 569.

    CAS  Article  Google Scholar 

  55. 55.

    M. Zhang, J. F. Zhang, X. J. Feng, H. Y. Zhang, L. X. Zhao, Y. H. Luo, and W. Cao (2013). J. Phys. Chem. A 117, 13025.

    CAS  Article  Google Scholar 

  56. 56.

    J. U. Reveles, et al. (2009). Nat. Chem. 1, 310.

    CAS  Article  Google Scholar 

  57. 57.

    Z. Luo and A. W. Castleman (2014). Acc. Chem. Res. 47, 2931.

    CAS  Article  Google Scholar 

  58. 58.

    M. Zhang, J. F. Zhang, T. Gu, H. Y. Zhang, Y. H. Luo, and W. Cao (2015). J. Phys. Chem. A 119, 3458.

    CAS  Article  Google Scholar 

  59. 59.

    Y. Wang, J. Lv, L. Zhu, and Y. Ma (2012). Comput. Phys. Commun. 183, 2063–2070.

    CAS  Article  Google Scholar 

  60. 60.

    Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma (2012). J. Chem. Phys. 137, 224108.

    Article  Google Scholar 

  61. 61.

    B. Delley (1990). J. Chem. Phys. 92, 508.

    CAS  Article  Google Scholar 

  62. 62.

    J. P. Perdew and Y. Wang (1992). Phys. Rev. B 45, 13244.

    CAS  Article  Google Scholar 

  63. 63.

    A. D. Becke (1988). Phys. Rev. A 38, 3098.

    CAS  Article  Google Scholar 

  64. 64.

    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    CAS  Article  Google Scholar 

  65. 65.

    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    CAS  Article  Google Scholar 

  66. 66.

    F. W. Froben, W. Schulze, and U. Kloss (1983). Chem. Phys. Lett. 99, 500.

    Article  Google Scholar 

  67. 67.

    H. J. Himmel and B. Gaertner (2004). Chem. Eur. J. 10, 5936.

    CAS  Article  Google Scholar 

  68. 68.

    M. D. Morse (1986). Chem. Rev. (Washington, D.C.) 86, 1049.

    CAS  Article  Google Scholar 

  69. 69.

    X. Wang, A. A. Adeleke, W. Cao, Y. H. Luo, M. Zhang, and Y. Yao (2016). J. Phys. Chem. C 120, 25588.

    CAS  Article  Google Scholar 

  70. 70.

    M. Zhang, H. Y. Zhang, L. N. Zhao, Y. Li, and Y. H. Luo (2012). J. Phys. Chem. A 116, 1493.

    CAS  Article  Google Scholar 

  71. 71.

    J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coordin. Chem. Rev. 289, 315.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11204079 and 11304096), the Natural Science Foundation of Shanghai (Grant No. 15ZR1409600), and the Fundamental Research Funds for the Central Universities of China (Nos. 222201514320, 222201714018).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhang or Youhua Luo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, L., Feng, X. et al. First-Principles Investigation of Trimetallic Clusters: GaMnLi n (n = 1–12). J Clust Sci 28, 2323–2335 (2017). https://doi.org/10.1007/s10876-017-1226-9

Download citation

Keywords

  • Density functional theory
  • Trimetallic cluster
  • Lithium clusters