Journal of Cluster Science

, Volume 28, Issue 4, pp 2323–2335 | Cite as

First-Principles Investigation of Trimetallic Clusters: GaMnLin (n = 1–12)

Original Paper
  • 125 Downloads

Abstract

The lowest-energy structures and low-lying isomers of double impurity atoms, Ga and Mn, doped Lin (n = 1–12) clusters have been systematically investigated using density functional theory. The trimetallic clusters show larger relative binding energies compared with the bare Lin+2 partners, indicating doping with Ga and Mn atoms could enhance the stabilities of Lin clusters. The HOMO–LUMO gaps, the vertical ionization potentials and the vertical electron affinities have also been analyzed and compared with the pure lithium clusters. The magnetism calculations demonstrate that the magnetic moments of GaMnLin clusters show a tunable magnetic properties with the increasing number of Li atoms.

Keywords

Density functional theory Trimetallic cluster Lithium clusters 

References

  1. 1.
    E. Benichou, A. R. Allouche, M. Aubert-Frecon, R. Antoine, M. Broyer, P. Dugourd, and D. Rayane (1998). Chem. Phys. Lett. 290, 171.CrossRefGoogle Scholar
  2. 2.
    L. R. Brock, A. M. Knight, J. E. Reddic, J. S. Pilgrim, and M. A. Duncan (1997). J. Chem. Phys. 106, 6268.CrossRefGoogle Scholar
  3. 3.
    H. W. Sarkas, S. T. Arnold, J. H. Hendricks, V. L. Slager, and K. H. Bowen (1994). Z. Phys. D 29, 209.CrossRefGoogle Scholar
  4. 4.
    C. Bréchihnac, H. Busch, P. Cahuzac, and J. Leygnier (1994). J. Chem. Phys. 101, 6992.CrossRefGoogle Scholar
  5. 5.
    A. Kornath, A. Kaufmann, A. Zoermer, and R. Ludwig (2003). J. Chem. Phys. 118, 6957.CrossRefGoogle Scholar
  6. 6.
    I. Muz, M. Atiş, O. Canko, and E. K. Yildirim (2013). Chem. Phys. 418, 14.CrossRefGoogle Scholar
  7. 7.
    D. Yepes, S. R. Kirk, S. Jenkins, and A. Restrepo (2012). J. Mol. Model. 18, 4171.CrossRefGoogle Scholar
  8. 8.
    G. Gardet, F. Rogemond, and H. Chermette (1996). J. Chem. Phys. 105, 9933.CrossRefGoogle Scholar
  9. 9.
    S. E. Wheeler, K. W. Sattelmeyer, P. vR Schleyer, H. F. Schaefer, and C. H. Wu (2004). J. Chem. Phys. 120, 4683.CrossRefGoogle Scholar
  10. 10.
    R. O. Jones, A. I. Lichtenstein, and J. Hutter (1997). J. Chem. Phys. 106, 4566.CrossRefGoogle Scholar
  11. 11.
    T. B. Tai, P. V. Nhat, M. T. Nguyen, S. Li, and D. A. Dixon (2011). J. Phys. Chem. A 115, 7673.CrossRefGoogle Scholar
  12. 12.
    J. Blanc, V. Bonačić-Koutecký, M. Broyer, J. Chevaleyre, P. Koutecký, J. Dugourd, C. Scheuch, J. Wolf, and L. Wöste (1992). J. Chem. Phys. 96, 1793.CrossRefGoogle Scholar
  13. 13.
    M. W. Sung, R. Kawai, and J. H. Weare (1994). Phys. Rev. Lett. 73, 3552.CrossRefGoogle Scholar
  14. 14.
    R. Fournier, J. B. Y. Chang, and A. Wong (2003). J. Chem. Phys. 119, 9444.CrossRefGoogle Scholar
  15. 15.
    N. Goel, S. Gautam, and K. Dharamvir (2012). Int. J. Quantum Chem. 112, 575.CrossRefGoogle Scholar
  16. 16.
    A. N. Alexandrova and A. I. Boldyrev (2005). J. Chem. Theory Comput. 1, 566.CrossRefGoogle Scholar
  17. 17.
    A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen (2011). J. Chem. Phys. 134, 044322.CrossRefGoogle Scholar
  18. 18.
    P. Chetri, R. C. Deka, and A. Choudhury (2013). Phys. B Condens. Matter 430, 74.CrossRefGoogle Scholar
  19. 19.
    I. Boustani, W. Pewestorf, P. Fantucci, V. Bonaić-Koutecký, and J. Koutecký (1987). Phys. Rev. B 35, 9437.CrossRefGoogle Scholar
  20. 20.
    Z. Y. Jiang, K. H. Lee, S. T. Li, and S. Y. Chu (2006). Int. J. Mass Spectrosc. 253, 104.CrossRefGoogle Scholar
  21. 21.
    J. Pérez, E. Flórez, C. Hadad, P. Fuentealba, and A. Restrepo (2008). J. Phys. Chem. A 112, 5749.CrossRefGoogle Scholar
  22. 22.
    M. D. Deshpande and D. G. Kanhere (2002). Phys. Rev. A 65, 033202.CrossRefGoogle Scholar
  23. 23.
    T. Baruah and D. G. Kanhere (2001). Phys. Rev. A 63, 063202.CrossRefGoogle Scholar
  24. 24.
    A. Meden, J. Mavri, M. Bele, and S. Pejovnik (1995). J. Phys. Chem. 99, 4252.CrossRefGoogle Scholar
  25. 25.
    K. A. Nguyen and K. Lammertsma (1998). J. Phys. Chem. A 102, 1608.CrossRefGoogle Scholar
  26. 26.
    K. A. Nguyen, G. N. Srinivas, T. P. Hamilton, and K. Lammertsma (1999). J. Phys. Chem. A 103, 710.CrossRefGoogle Scholar
  27. 27.
    T. B. Tai and M. T. Nguyen (2010). Chem. Phys. 375, 35.CrossRefGoogle Scholar
  28. 28.
    T. B. Tai and M. T. Nguyen (2010). Chem. Phys. Lett. 489, 75.CrossRefGoogle Scholar
  29. 29.
    A. I. Boldyrev, J. Simons, and P. vR Schleyer (1993). J. Chem. Phys. 99, 8793.CrossRefGoogle Scholar
  30. 30.
    A. I. Boldyrev, N. Gonzales, and J. Simons (1994). J. Phys. Chem. 98, 9931.CrossRefGoogle Scholar
  31. 31.
    A. V. Nemukhin, J. Almlof, and A. Heiberg (1980). Chem. Phys. Lett. 76, 601.CrossRefGoogle Scholar
  32. 32.
    V. Kuma (1999). Phys. Rev. B 60, 2916.CrossRefGoogle Scholar
  33. 33.
    X. Q. Guo, R. Podloucky, and A. J. Freeman (1990). Phys. Rev. B 42, 10912.CrossRefGoogle Scholar
  34. 34.
    S. Chacko and D. G. Kanhere (2004). Phys. Rev. A 70, 023204.CrossRefGoogle Scholar
  35. 35.
    J. Akola and M. Manninen (2002). Phys. Rev. B 65, 245424.CrossRefGoogle Scholar
  36. 36.
    H. P. Cheng, R. N. Barnett, and U. Landman (1993). Phys. Rev. B 48, 1820.CrossRefGoogle Scholar
  37. 37.
    M. S. Lee, S. Gowtham, H. He, K. C. Lau, L. Pan, and D. G. Kanhere (2006). Phys. Rev. B 74, 245412.CrossRefGoogle Scholar
  38. 38.
    T. B. Tai and M. T. Nguyen (2012). J. Comput. Chem. 33, 800.CrossRefGoogle Scholar
  39. 39.
    P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, W. Vanhoutte, H. Weidele, R. E. Silverans, A. N. Vazquez, and P. vR Schleyer (1999). Eur. Phys. J. D 9, 289.CrossRefGoogle Scholar
  40. 40.
    P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, F. Vanhoutte, H. Weidele, and R. E. Silverans (1999). Chem. Phys. Lett. 302, 571.CrossRefGoogle Scholar
  41. 41.
    J. Ivanic and C. J. Marsden (1993). J. Am. Chem. Soc. 115, 7503.CrossRefGoogle Scholar
  42. 42.
    P. vR Schleyer, E. U. Wurthwein, E. Kaufman, T. Lark, and J. A. Pople (1983). J. Am. Chem. Soc. 105, 5930.CrossRefGoogle Scholar
  43. 43.
    K. Joshi and D. G. Kanhere (2002). Phys. Rev. A 65, 043203.CrossRefGoogle Scholar
  44. 44.
    S. Shetty, S. Pal, and D. G. Kanhere (2003). J. Chem. Phys. 118, 7288.CrossRefGoogle Scholar
  45. 45.
    K. Joshi and D. G. Kanhere (2003). J. Chem. Phys. 119, 12301.CrossRefGoogle Scholar
  46. 46.
    G. Gopakumar, P. Lievens, and M. T. Nguyen (2007). J. Phys. Chem. A 111, 4353.CrossRefGoogle Scholar
  47. 47.
    V. T. Ngan, J. H. Haeck, H. T. Le, G. Gopakumar, P. Lievens, and M. T. Nguyen (2009). J. Phys. Chem. A 113, 9080.CrossRefGoogle Scholar
  48. 48.
    Z. Guo, B. Lu, X. Jiang, J. Zhao, and R. H. Xie (2010). Physica E 42, 1755.CrossRefGoogle Scholar
  49. 49.
    H. Kudo (1992). Nature 355, 432.CrossRefGoogle Scholar
  50. 50.
    M. Deshpande, A. Dhavale, R. R. Zope, S. Chacko, and D. G. Kanhere (2000). Phys. Rev. A 62, 063202.CrossRefGoogle Scholar
  51. 51.
    Y. Li, D. Wu, Z. R. Li, and C. C. Sun (2007). J. Comput. Chem. 28, 1677.CrossRefGoogle Scholar
  52. 52.
    Y. Li, Y. J. Liu, D. Wu, and Z. R. Li (2009). Phys. Chem. Chem. Phys. 11, 5703.CrossRefGoogle Scholar
  53. 53.
    T. B. Tai, P. V. Nhat, and M. T. Nguyen (2010). Phys. Chem. Chem. Phys. 12, 11477.CrossRefGoogle Scholar
  54. 54.
    P. Shao, X. Y. Kuang, L. P. Ding, M. M. Zhong, and Z. H. Wang (2013). Mol. Phys. 111, 569.CrossRefGoogle Scholar
  55. 55.
    M. Zhang, J. F. Zhang, X. J. Feng, H. Y. Zhang, L. X. Zhao, Y. H. Luo, and W. Cao (2013). J. Phys. Chem. A 117, 13025.CrossRefGoogle Scholar
  56. 56.
    J. U. Reveles, et al. (2009). Nat. Chem. 1, 310.CrossRefGoogle Scholar
  57. 57.
    Z. Luo and A. W. Castleman (2014). Acc. Chem. Res. 47, 2931.CrossRefGoogle Scholar
  58. 58.
    M. Zhang, J. F. Zhang, T. Gu, H. Y. Zhang, Y. H. Luo, and W. Cao (2015). J. Phys. Chem. A 119, 3458.CrossRefGoogle Scholar
  59. 59.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma (2012). Comput. Phys. Commun. 183, 2063–2070.CrossRefGoogle Scholar
  60. 60.
    Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma (2012). J. Chem. Phys. 137, 224108.CrossRefGoogle Scholar
  61. 61.
    B. Delley (1990). J. Chem. Phys. 92, 508.CrossRefGoogle Scholar
  62. 62.
    J. P. Perdew and Y. Wang (1992). Phys. Rev. B 45, 13244.CrossRefGoogle Scholar
  63. 63.
    A. D. Becke (1988). Phys. Rev. A 38, 3098.CrossRefGoogle Scholar
  64. 64.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  65. 65.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  66. 66.
    F. W. Froben, W. Schulze, and U. Kloss (1983). Chem. Phys. Lett. 99, 500.CrossRefGoogle Scholar
  67. 67.
    H. J. Himmel and B. Gaertner (2004). Chem. Eur. J. 10, 5936.CrossRefGoogle Scholar
  68. 68.
    M. D. Morse (1986). Chem. Rev. (Washington, D.C.) 86, 1049.CrossRefGoogle Scholar
  69. 69.
    X. Wang, A. A. Adeleke, W. Cao, Y. H. Luo, M. Zhang, and Y. Yao (2016). J. Phys. Chem. C 120, 25588.CrossRefGoogle Scholar
  70. 70.
    M. Zhang, H. Y. Zhang, L. N. Zhao, Y. Li, and Y. H. Luo (2012). J. Phys. Chem. A 116, 1493.CrossRefGoogle Scholar
  71. 71.
    J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coordin. Chem. Rev. 289, 315.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsEast China University of Science and TechnologyShanghaiChina

Personalised recommendations