Skip to main content
Log in

Study on Structure and Property of Lutetium Introduced Silicon Clusters LuSi n (n = 3–10) and Their Anions with Density Functional Theory

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The geometries, electronic structures and properties including simulated photoelectron spectra (PES), adiabatic electron affinities (AEAs), and relative stability of LuSi n (n = 3–10) and their anions were investigated adopting the ABCluster global search technique combined with density functional methods. The results revealed that the most stable structures of neutral belong to “substitutional structure”, but not for their anions. The additional electron effects on the most stable structure are intense. The TPSSh AEAs of LuSi n (n = 6–9) agree excellently with the experimental data. The mean absolute error and the largest error are only 0.03 eV and 0.05 eV, respectively. The agreement between the experimental and theoretical PES indicates that the most stable structures of LuSi n (n = 6–10) are trustworthy. The DEs and charge transfer are calculated to explain the relative stabilities. HOMO–LUMO gaps reveal that introducing Lu atom to Si n (n = 3–10) raises the photochemical sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. G. Li, L. J. Pan, P. Shao, L. P. Ding, H. T. Feng, D. B. Luo, and B. Liu (2015). Theor. Chem. Acc. 134, 34-1–34-11.

    Google Scholar 

  2. R. N. Zhao and J. G. Han (2014). RSC Adv. 4, 64410–64418.

    Article  CAS  Google Scholar 

  3. G. F. Zhao, J. M. Sun, Y. Z. Gu, and Y. X. Wang (2009). J. Chem. Phys. 131, 114312-1–114312-7.

    Google Scholar 

  4. Q. Peng and J. Shen (2008). J. Chem. Phys. 128, 084711-1–084711-11.

    Article  Google Scholar 

  5. L. Y. Hou, J. C. Yang, and Y. M. Liu (2016). J. Mol. Model. 22, 193-1–193-10.

    Article  Google Scholar 

  6. M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, and K. Kaya (2002). J. Phys. Chem. A 106, 3702–3705.

    Article  CAS  Google Scholar 

  7. A. Grubisic, Y. J. Ko, H. P. Wang, and K. H. Bowen (2009). J. Am. Chem. Soc. 131, 10783–10790.

    Article  CAS  Google Scholar 

  8. A. Grubisic, H. P. Wang, Y. J. Ko, and K. H. Bowen (2008). J. Chem. Phys. 129, 054302-1–054302-5.

    Article  Google Scholar 

  9. K. Koyasu, J. Atobe, S. Furuse, and A. Nakajima (2008). J. Chem. Phys. 129, 214301-1–214301-7.

    Article  Google Scholar 

  10. K. Koyasu, J. Atobe, M. Akutsu, M. Mitsui, and A. Nakajima (2007). J. Phys. Chem. A 111, 42–49.

    Article  CAS  Google Scholar 

  11. A. J. Kenyon (2005). Semicond. Sci. Technol. 20, R65–R84.

    Article  CAS  Google Scholar 

  12. T. T. Cao, L. X. Zhao, X. J. Feng, Y. M. Lei, and Y. H. Luo (2009). J. Mol. Struct. THEOCHEM 895, 148–155.

    Article  CAS  Google Scholar 

  13. T. G. Liu, W. Q. Zhang, and Y. L. Li (2014). Front. Phys. 9, 210–218.

    Article  CAS  Google Scholar 

  14. T. G. Liu, G. F. Zhao, and Y. X. Wang (2011). Phys. Lett. A 375, 1120–1127.

    Article  CAS  Google Scholar 

  15. R. N. Zhao, Z. Y. Ren, P. Guo, J. T. Bai, C. H. Zhang, and J. G. Han (2006). J. Phys. Chem. A 110, 4071–4079.

    Article  CAS  Google Scholar 

  16. R. N. Zhao, J. G. Han, J. T. Bai, F. Y. Liu, and L. S. Sheng (2010). Chem. Phys. 372, 89–95.

    Article  CAS  Google Scholar 

  17. R. N. Zhao, J. G. Han, J. T. Bai, and L. S. Sheng (2010). Chem. Phys. Lett. 378, 82–87.

    CAS  Google Scholar 

  18. W. Xu, W. X. Ji, Y. Xiao, and S. G. Wang (2015). Comput. Theor. Chem. 1070, 1–8.

    Article  CAS  Google Scholar 

  19. V. Kumar, A. K. Singh, and Y. Kawazoe (2006). Phys. Rev. B 74, 125411-1–125411-5.

    Google Scholar 

  20. J. Wang, Y. Liu, and Y. C. Li (2010). Phys. Chem. Chem. Phys. 12, 11428–11431.

    Article  CAS  Google Scholar 

  21. X. H. Xie, D. S. Hao, and J. C. Yang (2015). Phys. Chem. 461, 11–19.

    Article  CAS  Google Scholar 

  22. X. H. Xie, D. S. Hao, Y. M. Liu, and J. C. Yang (2015). Comput. Theor. Chem. 1074, 1–8.

    Article  CAS  Google Scholar 

  23. J. C. Yang, J. Wang, and Y. R. Hao (2015). Theor. Chem. Acc. 134, 81.

    Article  Google Scholar 

  24. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865–3868.

    Article  CAS  Google Scholar 

  25. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401-1–146401-4.

    Article  Google Scholar 

  26. V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew (2003). J. Chem. Phys. 119, 12129–12137.

    Article  CAS  Google Scholar 

  27. A. D. Becke (1993). J. Chem. Phys. 98, 5648–5652.

    Article  CAS  Google Scholar 

  28. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785–789.

    Article  CAS  Google Scholar 

  29. J. D. Chai and M. H. Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615–6620.

    Article  CAS  Google Scholar 

  30. D. E. Woon and T. H. Dunning Jr. (1993). J. Chem. Phys. 98, 1358–1371.

    Article  CAS  Google Scholar 

  31. X. Y. Cao and M. Dolg (2002). J. Mol. Struct. THEOCHEM. 581, 139–147.

    Article  CAS  Google Scholar 

  32. A. A. Buchachenko, G. Chalasin´ski, and M. M. Szezes´niak (2007). Struct. Chem. 18, 769–772.

    Article  CAS  Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, (2010).

  34. J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173–24181.

    Article  CAS  Google Scholar 

  35. M. Dolg, H. Stoll, A. Savin, and H. Preuss (1989). Theor. Chim. Acta. 75, 173–194.

    Article  CAS  Google Scholar 

  36. M. Dolg (2011). J. Chem. Theory Comput. 7, 3131–3142.

    Article  CAS  Google Scholar 

  37. M. Douglas and N. M. Kroll (1974). Ann. Phys. (NY) 82, 89–155.

    Article  CAS  Google Scholar 

  38. B. A. Hess (1985). Phys. Rev. A 32, 756–763.

    Article  CAS  Google Scholar 

  39. B. A. Hess (1986). Phys. Rev. A 33, 3742–3748.

    Article  CAS  Google Scholar 

  40. G. Jansen and B. A. Phys (1989). Rev. A 39, 6016–6017.

    Article  CAS  Google Scholar 

  41. J. C. Yang, W. G. Xu, and W. S. Xiao (2005). J. Mol. Struct. THEOCHEM 719, 89–102.

    Article  CAS  Google Scholar 

  42. D. J. Tozer and N. C. Handy (1998). J. Chem. Phys. 109, 10180–10189.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant No. 21263010), by Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Gran No. NMGIRT-A1603), by the Inner Mongolia Natural Science Foundation (Grant No. 2015MS0216), and by the Science and Research Foundation of Higher Education of Inner Mongolia (Grant No. NJZY16419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Yang, J. Study on Structure and Property of Lutetium Introduced Silicon Clusters LuSi n (n = 3–10) and Their Anions with Density Functional Theory. J Clust Sci 28, 2309–2322 (2017). https://doi.org/10.1007/s10876-017-1225-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1225-x

Keywords

Navigation